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Abstract

Knowledge-based automated planning (KBAP) is a data-driven radiation therapy
treatment planning method that first predicts desirable treatments before generating
deliverable ones. We propose the first 3-D generative adversarial network-based
KBAP pipeline that predicts a dose distribution from a CT scan before optimizing
for deliverability. Our experiments on a dataset of oropharyngeal cancer patients
show that this new framework, 3-D GANCER, significantly outperforms previous
methods on replicating the same clinical criteria satisfaction as real plans.

1 Introduction

Radiation therapy (RT) is a common cancer treatment method and prescribed for nearly 50% of all
cases [Delaney et al., 2005]. An RT treatment plan has two components: the dose distribution tensor
whose elements are the dose delivered to each voxel of the patient’s body, and the vector of beamlet
intensities from a linear accelerator (LINAC) that delivers the radiation. Designing a treatment plan
is a complex problem where beamlet intensities are optimized to satisfy clinical constraints, while
minimizing multiple competing objectives. The current clinical practice is an iterative back-and-forth
between a dosimetrist who generates a treatment plan, and an oncologist who suggests revisions.
Completing a single plan may take several days, making the procedure both labor intensive and costly.

Contrasting the iterative procedure, Knowledge-Based Automated Planning (KBAP) is a data-driven
approach that trains on historical plans to generate new plans for future patients. KBAP contains two
stages: (a) a machine learning model that predicts a clinically satisfactory dose [Appenzoller et al.,
2012, Younge et al., 2018], and (b) an optimization model that prescribes a deliverable treatment plan
(i.e., beamlets and dose) [McIntosh and Purdie, 2017, Babier et al., 2018a]. Prediction is essential to
KBAP, as the quality of final plans strongly correlate with the quality of predicted doses [Babier et al.,
2018a]. Thus, the literature focuses on designing better predictive models. Historically, these have
been classical ML models that predict low-dimensional representations of the dose (e.g., summary
statistics and histograms) [Zhu et al., 2011, Yuan et al., 2012, Babier et al., 2018a]. Only recently
have researchers introduced models to directly predict the full dose distribution, with their results
significantly outperforming classical methods [McIntosh and Purdie, 2016, Mahmood et al., 2018].

Mathematically, the dose delivered is simply a 3-dimensional heatmap. Therefore, predicting dose is
a matter of inputting the 3-D CT image of a patient and outputting a 3-D tensor representing dose.
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Figure 1: Overview of the KBAP pipeline.

This is a style transfer problem and it is well understood that generative adversarial networks (GANs)
excel in this task [Goodfellow et al., 2014, Wu et al., 2016, Isola et al., 2017]. Moreover, GANs
have been studied in limited extent for KBAP [Mahmood et al., 2018]. This work aims to develop a
complete study of GANs as the prediction engine in KBAP. Specifically, we contribute the following:

1. We design the first 3-D style transfer GAN for KBAP that inputs a patient’s CT image and
outputs the dose distribution. This is the first neural network-based approach that predicts
the entire 3-D dose tensor without feature engineering from the original 3-D CT image.

2. We suggest that representing dose intensity as gray-scale (i.e., a 1-channel output) produces
better predictions than if the full 3-channel (RGB) input is used.

3. We compare our model, referred to as 3-D GANCER, with the state-of-the-art on a dataset
of 217 oropharyngeal cancer patients. We implement the full KBAP pipeline and evaluate
the post-optimization plans. Our model outperforms all baselines on several clinical metrics.

2 Methods

Fig. 1 highlights the KBAP pipeline. Patient CT scans are used to predict (via our model or baselines)
a clinically acceptable dose distribution. Predictions are used in an optimization model to generate a
plan [Babier et al., 2018b]. A review of KBAP is provided in McIntosh and Purdie [2016].

2.1 Data

We obtained plans for 217 oropharyngeal cancer patients treated at a single institution with 6 MV,
step-and-shoot, intensity-modulated radiation therapy. All plans had at least two planning target
volumes (PTVs) that were prescribed 70 Gy and 56 Gy in 35 fractions to the gross disease (PTV70)
and elective target volumes (PTV56), respectively; 130 plans also had a prescription of 63 Gy to
an intermediate risk target volume (PTV63). The brainstem, spinal cord, right parotid, left parotid,
larynx, esophagus, mandible, and the limPostNeck (an artificial structure in the posterior neck) are
referred to as organs-at-risk (OAR), and must be spared sufficiently according to clinical criteria.

Each patient is discretized into voxels of size 4 mm × 4 mm × 2 mm. CT images and dose
distributions are converted into 128× 128× 128 tensors of 3-channel (RGB) and 1-channel (dose
intensity) respectively. We randomly spit the data into 130 patients for training and 87 for testing.

2.2 Generative Adversarial Network

In KBAP, a style transfer GAN consists of two networks that learn to take a CT image c and
random initialization z ∼ pz and predict the dose x ∼ pdata [Goodfellow et al., 2014, Isola et al.,
2017]. Specifically, a generator network G(c, z) = x performs the prediction while a discriminator
D(x, c) ∈ [0, 1] learns to classify generator output. We use the conventional style transfer loss:

L = Ex∼pdata [logD(x, c)] + Ez∼pz [log(1−D(G(z, c), c))] + λEx∼pdata,z∼pz [‖x−G(z, c)‖] .

The generator minimizes the last two terms of this loss function, while the discriminator maximizes
the first two terms. While the first two terms comprise the standard GAN loss function, the third is
used in style transfer problems to help generate images that better resemble the ground truth. The
hyperparameter λ balances the tradeoffs between the standard GAN loss and the style transfer.

The generator and discriminator network architectures were derived from the U-net pix2pix of Isola
et al. [2017], with the key difference being the use of 3-D convolutional filters. We provide more
details on the network architecture, training, and parameter selection in Appendix A.
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Table 1: The percentage of final plans of each KBAP population that satisfy the same clinical criteria
as the clinical plans. Here, Dmean is the mean dose to the structure, Dmax is the maximum dose, and
D99 is the dose to the 99-th percentile. Highest percentages per structure are in bold.

Structure Criteria RF 2-D RGB-GAN 2-D GANCER 3-D GANCER

Brain Stem Dmax ≤ 54 Gy 100.0 100.0 100.0 100.0
Spinal Cord Dmax ≤ 48 Gy 100.0 98.8 98.9 100.0

Right Parotid Dmean ≤ 26 Gy 95.2 98.8 97.6 98.8
Left Parotid Dmean ≤ 26 Gy 94.2 94.2 97.7 97.7

Larynx Dmean ≤ 45 Gy 92.5 92.4 92.5 95.0
Esophagus Dmean ≤ 45 Gy 100.0 100.0 100.0 100.0
Mandible Dmax ≤ 73.5 Gy 80.5 73.6 88.5 86.2
PTV70 D99 ≥ 66.5 Gy 98.9 83.9 100.0 100.0
PTV63 D99 ≥ 59.9 Gy 98.0 100.0 100.0 100.0
PTV56 D99 ≥ 53.2 Gy 97.7 94.3 97.7 100.0

All structures 66.7 48.3 75.9 78.2

2.3 Plan optimization

Predicted dose distributions are input into an inverse optimization (IO) pipeline [Babier et al., 2018b].
The IO model uses the predicted dose distribution to determine parameters of a treatment planning
optimization model, which is then solved to generate the plan. The planning model minimizes a
weighted sum of 65 objective functions: seven per OAR and three per PTV. The OAR objectives
include the mean dose, maximum dose, and the average dose above 0.25, 0.50, 0.75, 0.90, and 0.975 of
the maximum predicted dose to that OAR. Target objectives include the maximum dose, average dose
below prescription, and average dose above prescription. In addition, the sum-of-positive-gradients
(SPG), which is a surrogate measure for the physical deliverability from a LINAC, is constrained
to be less than 55 [Craft et al., 2007]. The influence of beamlets to dose voxels are derived using
CERR [Deasy et al., 2003]. We used Gurobi 7.5 to solve the optimization problem.

2.4 Baselines

We compare our model with several state-of-the-art baselines. All predictions are passed through the
IO model in the same way as our GAN predictions. Training details are given in Appendix A.

• 2-D RGB-GAN: Predicts 128 RGB images representing horizontal slices of the dose
distribution using the pix2pix architecture (e.g., [Mahmood et al., 2018]).

• 2-D GANCER: 1-channel variant of 2-D RGB-GAN that predicts 128 slices of the dose.

• Random Forest (RF): Predicts dose to each voxel using 133 features and Gaussian filters
(e.g., McIntosh and Purdie [2017]). The state-of-the-art from classical ML models.

3 Results

A sample of the prediction and post-prediction manifold is available in Appendix B. We evaluated
the models using 10 clinical criteria (Table 1). We counted the frequency of plans that satisfied the
same criteria as the ground truth clinical plans. We also calculated the extent to which each criteria
was satisfied. Clinical motivation and additional details on the metrics are provided in Appendix B.

Table 1 lists the frequency of KBAP plans that satisfy the same clinical criteria as the corresponding
clinical plans. For example, 95% of the fraction of clinical plans that satisfy the larynx criteria, have
corresponding 3-D GANCER plans that also satisfy this criteria. Overall, we find that 3-D GANCER
plans consistently replicate clinical plan quality for all PTVs and a majority of OARs. Moreover, 3-D
GANCER plans consistently outperform the baselines on all criteria, except for the mandible. This is
likely a consequence of good performance on targets, which are geometrically close to the mandible.

Figure 2 shows the distribution of differences among criteria between KBAP versus corresponding
clinical plans. 2-D and 3-D GANCER plans are most similar to clinical, and on average perform
0.3% better on criteria, but 3-D GANCER plans have a lower average inter-quartile range (IQR)
(0.08 vs 0.09). While 2-D RGB-GAN best outperforms clinical plans on sparing criteria (average
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Figure 2: The distribution of criteria differences between the KBAP plans and the clinical plans.

2.4% improvement, 0.08 IQR), they fail to meet PTV criteria, which is unacceptable. RF plans are on
average 1.1% better than clinical with the smallest IQR (0.08), but Table 1 shows they do not always
satisfy the same criteria as clinical. Predicting the dose directly using GANs yields plans that are
most similar to clinical; in addition, 3-D GANCER plans are the most consistent in the lower IQR.

4 Discussion and Future Work

We propose the first 3-D style transfer GAN for KBAP, which learns to predict the entire dose
distribution from a CT scan. We implement our model on a oropharyngeal cancer dataset along
with several baselines. We compare all models by evaluating post-optimization final plans and find
that our model, 3-D GANCER, outperforms all baselines on standard clinical criteria for evaluating
RT treatment plans. Compared to prior work on 2-D slices, a 3-D style transfer GAN improves
predictions by accounting for correlations in the vertical axis. For example, a real dose distribution
will decrease smoothly beyond the boundary of the PTV; a 2-D style transfer GAN is likely to predict
the dose dropping sharply along this edge. Permitting vertical correlations allows us to consistently
replicate criteria satisfaction of historical, oncologist-approved plans for nearly every patient organ.

While extremely powerful, GANs have historically been hard to train, i.e., outputting hallucinations,
or mode collapse. However, we find that GANs perform without difficulty inside a KBAP pipeline,
often with just off-the-shelf architectures and default parameters. We believe this success is due
to two factors. First, in contrast to a conventional task of generating detailed photographs, the
task of predicting dose tensors is much easier, as these are smooth images with relatively simple
characteristics. Second, all predictions are passed through an optimization model to obtain "physically
deliverable" plans. Thus, not only do GANs face an easier task than in conventional applications, but
the optimization model also acts as a safety-net that corrects potential hallucinations or errors. In
KBAP, the weaknesses of GANs are nullified, making them very appropriate for dose prediction.

Our results suggest 3-D GANCER is the most effective predictive component to date in KBAP for
oropharyngeal cancer. Future work should extend this method to other cancer sites.
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A Model details

A.1 Training the GANs

For all of the GANs used in experiments, both the generator and discriminator networks are derived from the
pix2pix architecture [Isola et al., 2017], We use a U-net architecture for the generator that passes contoured CT
images through consecutive convolution layers, a bottleneck layer, and then through several deconvolution layers.
The U-net also employs skip connections, i.e., the output of each convolution layer is concatenated to the input
of a corresponding deconvolution layer. This allows the generator to easily pass “high-dimensional” information
(e.g., structural outlines) between the inputted CT image and the outputted dose. The discriminator passes a
dose distribution along several consecutive convolution layers, outputting a single scalar value. We use the same
number of layers in the encoder, bottleneck, and decoder. The 2-D RGB-GAN architecture, which was proposed
in Mahmood et al. [2018] is an exactly the same (i.e., the same filter sizes) as the pix2pix in Isola et al. [2017].
The 2-D GANCER architecture is equivalent to Isola et al. [2017] except with the final layer outputting a 1
channel 2-D slice. The 3-D GANCER architecture is the same as the 2-D GANCER, except all filters are 3-D
convolutional with the same sizes as before.

We used the loss function described in Section 2.2 with λ = 90, and trained using the Adam optimization algo-
rithm [Kingma and Ba, 2014], with learning rate 0.0002 and β1 = 0.5 and β2 = 0.999. These hyperparameters
are the default Adam settings [Isola et al., 2017], and are good for a variety of different style transfer problems.
While we swept through various values for λ, we found the default to be sufficient. We also found it useful to
stop training when the loss functions were roughly equal; if the loss from the l1 penalty fell too low, the GAN
began to memorize the dataset. To prevent this the 2-D RGB-GAN and 2-D GANCER networks were trained for
50 epochs, and the 3-D GANCER network was trained for 200 epochs. These settings are listed in Table 2.

In our initial experiments, we found that the final plans outputted from KBAP using 2-D GANCER and 3-D
GANCER were actually underperforming by not providing sufficient dose to the PTV. Therefore, we rescaled
the dose predictions of 2-D GANCER and 3-D GANCER by multiplying by a scalar until all of the target criteria
were "just" satisfied. This scalar varies for each plan, but it is easy to determine with a simple sweep. Note that
this scaling does not affect the fairness of the analysis as all predictions are regardless input into the IO model in
order to obtain a "physically deliverable" treatment plan. That is, the final plans all have the same complexity
regardless of any scaling post-prediction. Note that we did not rescale the 2-D RGB-GAN as we found that this
scaling factor negatively impacted the performance of this model.

Table 2: GAN settings.
2-D RGB-GAN 2-D GANCER 3-D GANCER

Generator input Axial slice of CT Axial slice of CT Whole CT image
Generator output 128× 128 RGB image 128× 128 dose 128× 128× 128 dose

Post-prediction scaling No Yes Yes
Number of epochs 50 50 200
λ 90
Learning rate 0.0002
Adam momentum (β1, β2) = (1.05e− 5, 0.999)

A.2 Training the Random Forest

The random forest used 133 features outlined in Table A.2 to predict the dose delivered to each voxel in the
patient. Of these features, 10 of them were positional and hand-tailored, while 122 were generated by applying
122 Gaussian filters (GFs) to the grayscale CT image. One of the GFs was isotropic (σ = 10) and a second
was the Laplacian of the Gaussian (σ = 10). The remaining 120 filters were made of all combinations of
the following four parameters: (a) first and second order GFs, (b) σ = 4, 12, 24, 48, and 64, (c) rotations of
0, 90, 180, and 270 degrees, and (d) rotations in each of the three axes. The RF was trained with 10 trees and
default settings using the randomForestRegressor from scikit-learn.

B Analysis

Figure 3 shows a set of 5 slices of an average 3-D GANCER predicted dose distribution, comparing with the
corresponding CT slice, clinical dose, and the dose corresponding to the final plan. 3-D GANCER appropriately
learns to predict dose distributions that have the hallmarks of deliverability, i.e., sharp gradients generated from
individual beams. However, there are some subtle characteristics that 3-D GANCER cannot always identify.
Using IO post-prediction allows us to correct for these idiosyncrasies quite easily.
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Table 3: The ten features used in the RF to predict the dose for any voxel.
Feature Description

Structure Structure that the voxel is classified as
x-coordinate Voxel’s positions on the x-axis in a slice
y-coordinate Voxel’s positions on the y-axis in a slice
z-coordinate Plane of voxel’s slice

Distance to larynx Shortest path between voxel and the surface of the larynx
Distance to esophagus Shortest path between voxel and the surface of the esophagus

Distance to limPostNeck Shortest path between voxel the surface of the limPostNeck
Distance to PTV56 Shortest path between voxel and the surface of the PTV56
Distance to PTV63 Shortest path between voxel and the the surface of PTV63
Distance to PTV70 Shortest path between voxel and the the surface of PTV70

CT gray-scale gray-scale of the voxel in the CT image
122 GF CT gray-scales gray-scale of the voxel in the CT image post GF

CT

Clinical

3D-GANCER

Prediction

3D-GANCER

Plan

Figure 3: Sample of slices from a test patient. From top to bottom: contoured CT image (gen-
erator input), clinical plan (ground truth), 3D-GANCER prediction, and 3D-GANCER plan (post
optimization). Note that the gray-scale dose distributions are represented as RGB for clarity.

In clinical practice, all treatment plans must be approved by an oncologist before delivered. The oncologist
naturally evaluates several quantitative criteria along with some intuition in order to judge plan quality. Because
physical studies with oncologists can be expensive, the standard procedure for evaluating automated treatment
planning methods is to test if the plans successfully satisfy several quantitative criteria.

We use the criteria listed in Table 1 to evaluate our plans. These exact criteria have been used as benchmarks in a
number of previous studies on KBAP for treating oropharyngeal cancer [Babier et al., 2018a,b, Mahmood et al.,
2018]. There are 10 criteria, one for each OAR and PTV. The OAR criteria are generally testing whether the
average or the maximum (depending on the specific structure) dose to all voxels in that structure is below the
required value. The PTV criteria test whether the 99-th percentile dose to the specific PTV is at least greater
than or equal to the oncologist prescribed dose.
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B.1 Clinical Criteria Satisfaction

It is generally quite difficult to satisfy the clinical criteria, and in fact, the clinical plans in our dataset only satisfy
73% of the criteria on average. Therefore, the evaluation in Table 1 is counting the frequency of generated plans
that satisfy the same criteria as the ground truth. For example, 95% of all patients whose clinical plans satisfied
the larynx criterion have corresponding 3-D GANCER generated plans that also satisfy the larynx criterion. This
does not preclude patients whose clinical plans did not satisfy the larynx criterion, but for whom the generated
plans may have. This metric ensures that generated plans are as representative of the clinical as possible.

B.2 Clinical Criteria Performance

While clinical criteria satisfaction simply calculates whether the dose meets the threshold in the criteria,
the clinical criteria performance metric evaluates the relative difference between the KBAP plan and the
corresponding clinical plan on the dose achieved. For example, even if the clinical and KBAP plans satisfy
the larynx criteria and achieve Dmean ≤ 45 Gy, the plan with the lower Dmean is sparing the larynx better
than the other. Furthermore, by breaking down the differences on each constraint, we can better understand the
tradeoffs made by each KBAP pipeline. For example, the post-optimization plans generated via 2-D RGB-GAN
on average significantly outperform the clinical plans on criteria for sparing healthy tissue. In fact, they appear
to outperform nearly every other method for the brainstem, spinal cord, and right parotid. However, this comes
at a cost of not successfully meeting the PTV criteria, which are arguably more important. In contrast, the 3-D
GANCER plans are most similar to clinical plans, but only slightly outperforming them on most criteria. Ideally,
an automated planning method would generate plans that pass the same criteria as their clinical counterparts, but
amplify the margins on those specific criteria.
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