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Abstract

We present an MCMC algorithm for sampling from the complement of a polyhedron. Our

approach is based on the Shake-and-bake algorithm for sampling from the boundary of a set

and provably covers the complement. We use this algorithm for data augmentation in a ma-

chine learning task of classifying a hidden feasible set in a data-driven optimization pipeline.

Numerical results on simulated and MIPLIB instances demonstrate that our algorithm along

with a supervised learning technique outperforms conventional unsupervised baselines.

1 Introduction

High-dimensional sampling is a fundamental tool that is used in various domains such as machine

learning (Andrieu et al., 2003), optimization (Bertsimas and Vempala, 2004), and stochastic mod-

eling (Ripley, 2009). Sampling from a high-dimensional set is a key component of approximation

algorithms for problems that cannot be tractably solved with conventional methods.

The literature on high-dimensional sampling primarily addresses the problem of efficiently sam-

pling points that lie within a convex set, with the family of Markov Chain Monte Carlo (MCMC)

methods being the most commonly used approach in this setting (Brooks et al., 2011). Recent

applications in ranking have also generated interest in the related problem of sampling from the

boundary of convex sets (Dieker and Vempala, 2015). However, to the best of our knowledge,

there has not been prior work on sampling from the complement of a convex set.

In this paper, we consider the task of efficiently sampling from sets defined by the complement

of a polyhedron for which there exist many potential applications. For example, the complement

operator can be used to represent disjunctions, which when combined with conjunctions, can de-

scribe arbitrary sets. We note that both disjunctive sets and MCMC sampling are common tools

in mixed-integer programming (Balas, 1979; Huang and Mehrotra, 2013). Another application is
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in data-driven optimization, where sampling from the complement of the feasible set of a partially

described optimization problem can help train a machine learning model to predict aspects of the

decision-making problem (Babier et al., 2018).

1.1 Motivating task

In practical decision-making problems, an optimization model is designed with structural assump-

tions and parameter estimates. The growing paradigm of data-driven optimization uses historical

decisions to inform the construction of these parameters. For example in data-driven robust opti-

mization, an uncertainty set around the parameters of a constraint is created by analyzing prior

instances (Bertsimas et al., 2015). In another example, the hidden constraints of an optimization

problem are learned by training a binary classifier using a data set of historical decisions (Babier

et al., 2018).

The use of machine learning in most data-driven optimization settings is often limited by the

fact that in most applications, the available data consists only of past implemented decisions.

Decision-makers rarely collect data on unimplemented decisions, meaning that the available infor-

mation belongs to a single category. Consequently, supervised learning techniques that learn by

differentiating between instances of different classes are often untenable and methods are typically

limited to statistical frameworks or unsupervised models (Bertsimas et al., 2015; Babier et al.,

2018).

Our objective is to solve an optimization problem that has hidden constraints. To this end,

we wish to construct a barrier function for use in an interior point method when we do not know

the true feasible set, but are instead given a relaxation and a data set of feasible decisions (Babier

et al., 2018). Our approach is to construct a binary classifier that predicts whether a given decision

is feasible or not. By sampling from a known subset of the infeasible region, i.e., the complement

of the relaxation, we can augment our initial data set of feasible decisions with unimplemented

decisions to train the classifier.

1.2 Contributions

The complement of a polyhedron is a non-convex set, making conventional sampling techniques

inappropriate for the task. Our key methodological contribution is an efficient MCMC algorithm

for generating a sequence of points from the complement. Our approach extends current techniques

that sample from the boundary of the set. We prove that our algorithm is guaranteed to cover the

entire complement region and show that this is a sufficient condition to create a binary classifier

that learns to distinguish between feasible and infeasible points for high-dimensional problems.

To demonstrate the effectiveness of our approach, we perform several numerical experiments on

a variety of optimization problems. For each problem, a set of feasible decisions from an unknown

feasible set are provided and we generate an artificial data set of infeasible decisions that lie in the
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complement of a known polyhedral relaxation using our MCMC algorithm. We then train a classifier

to learn a separating boundary between the feasible and the infeasible data set. We compare our

approach with several unsupervised density estimation baselines that are not augmented with data

sampled from the complement. Using a simulated fractional knapsack problem, we show that our

approach is essential for creating classifiers that (i) perform well when a tight separating boundary

between feasible and infeasible regions is required; and (ii) when the data set of feasible decisions

is small. Further, we consider linearized relaxations of all MIPLIB (miplib2017) instances with

less than 80 variables and demonstrate that our sampling-based classifier significantly outperforms

all baseline models. Code for our experiments are available at https://github.com/rafidrm/

mcmc-complement.

Although our focus is on polyhedra, our approach can be adapted to non-linear sets similar to

how sampling from the boundary of a polyhedron generalizes to the boundary of arbitrary convex

sets. In the Online Appendix, we explore how to sample from the complement of an ellipsoid and

prove that our algorithm also covers the complement in this setting. As a result, we demonstrate

that our MCMC algorithm has more general applicability, and can be applied to, for instance,

problems in robust optimization which commonly involve ellipsoidal uncertainty sets (Bertsimas

et al., 2011).

2 Preliminaries

Consider a polyhedron X := {x ∈ Rn | aTmx ≤ bm, 1 ≤ m ≤ M}. There exist several algorithms

for sampling from the interior int(X ), with the most well-known being the Hit-and-Run (HR)

algorithm (Smith, 1984). Similarly, the Shake-and-Bake (SB) algorithm is the most well-known

approach to sampling from the boundary bd(X ) (Boender et al., 1991). These algorithms fall under

the family of MCMC techniques which operate by constructing a sequence of points governed by

a proposal function. The sequence describes a Markov chain whose stationary distribution reflects

the desired properties encoded by the proposal function (e.g., HR and SB converge to uniform

distributions supported over int(X ) and bd(X ), respectively). Our MCMC approach for sampling

from Rn \ X is based on the SB algorithm.

SB operates on principles of stochastic billiards; intuitively, a ball bounces from each facet of the

polyhedron to other facets with the points of contact being the generated points. The algorithm is as

follows: assume an initial point w0 ∈ bd(X ) that lies on a single facet. That is, there is a unique m

for which aTmw0 = bm and aTm′w0 < bm′ for all m′ 6= m. At every iteration of SB, given a boundary

point x lying on the m-th facet, sample a feasible direction vector r ∈ Rm := {r | aTmr ≤ 0, ‖r‖ = 1}
according to some direction probability distribution pr(r|w). Then, calculate the nearest boundary

point w′ ∈ bd(X ) from w in the direction of r. This new point is selected as the next point in the

Markov chain according to a move probability pw′(w
′|w). If w′ is not selected, then the Markov

chain does not update and the iteration repeats. Let N be the total number of iterations. In their
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seminal work on SB, Boender et al. (1991) proved that (i) the algorithm ensures (almost surely)

every point on the Markov chain {wj}Nj=1 lies on a unique facet of X , and (ii) the Markov chain

has a stationary uniform distribution over bd(X ).

There exist several variants of the SB algorithm that differ in their choices for the direction

and move probabilities (Boender et al., 1991). The two most common variants are the Original SB

and the Running SB. In the Original SB, the direction probability is uniform over the half-space

defined by the facet Rm. This leads to a move probability proportional to the angles of incidence.

On the other hand, for the Running SB, the direction probability is chosen such that the algorithm

moves in every iteration, i.e., pw′(w
′|w) = 1 for all w′,w ∈ bd(X ). In this work, we consider the

Original SB algorithm due to its simplicity in calculating the direction probabilities.

3 Sampling from the complement of a polyhedron

Assume that X is full-dimensional and non-empty. Given a polyhedron X , we generate a sequence

of N points D = {xi}Ni=0 such that D ⊂ Rn \ X . In each iteration of SB, a direction vector is

sampled and the next point on the boundary is found by moving in the given direction from the

current point. Notice, however, that moving in the negative direction from the current point yields

points that lie in the complement of the polyhedron, i.e., x ∈ Rn \ X .

In our algorithm, we treat SB as a Hidden Markov chain. In each iteration, the previous

boundary point is the hidden state and the observed state in the complement, x, is generated

according to the random direction vector that is sampled. Assume that the direction and move

probabilities pr(r|w) and pw(w′|w) are such that {wi}Ni=0 is a Markov chain of points on bd(X ). If

we sample a random scale variable ξ ∼ pξ(ξ|r,w) according to some positive distribution function,

then x = w− ξr ∈ Rn \X . Figure 1 shows a sample path of the chain {(wi,xi)}Ni=0 which includes

the hidden states. A detailed description of the MCMC algorithm is presented in Algorithm 1.

Algorithm 1 Complement Shake-and-Bake

Require: Polyhedron X =
{
x
∣∣ aTmx ≤ bm,m = 1, . . . ,M

}
; Sampling distributions pw(w′|w),

pr(r|w), pξ(ξ|r,w), Number of points N ; Initialization ŵ0 ∈ bd(X ), i = 0, D = ∅
while i < N do

Randomly sample ri ∼ pr(r|wi) and ξi ∼ pξ(ξ|r,w).
Update data set D ← D ∪ {wi − ξiri}.
Let θ ∈ minm

{
bm−aT

mwi

aT
mr̂i

> 0
}

.

With probability pw(wi + θr|wi), update wi+1 ← wi + θri and increase i ← i + 1, else
wi+1 = wi.
end while

We enjoy all of the computational benefits of the original SB algorithm since we recycle the

direction vectors r and only reverse the signs to ensure the generation of infeasible points. Gen-
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Figure 1: A sample sequence of points generated from the Complement SB algorithm. © and �
are points on the boundary and infeasible points respectively.

erating the scale variable ξ is the only additional computation. We refer to Boender et al. (1991)

for details on pr(r|w) and pw(w′|w). Any absolutely continuous distribution pξ(ξ) supported over

(0,∞) will suffice. Given an appropriate choice of pξ(ξ|r,w), we show that Algorithm 1 covers all

of Rn \ X . That is, any measurable region of Rn \ X has positive stationary probability.

Theorem 1. Let µn denote the n-dimensional Lebesgue measure on a set. If pξ(ξ|r,w) > 0 for

all ξ ∈ (0,∞) and r,w ∈ Rn, then for any initial point w0 ∈ bd(X ) and any µn-measurable subset

A ⊂ Rn \ X ,

lim
N→∞

P
{
xN ∈ A

∣∣ w0

}
> 0. (1)

Proof. Without loss of generality, let r̃ = ξr and pr̃(r̃|w) = pr(r|w)pξ(ξ|r,w). Let pSB(w) denote

the stationary distribution of the hidden state SB algorithm. Let A′ ⊂ Rn \ X denote a µn

measurable set for which there exists m such that aTmx > bm for all x ∈ A′. We first prove (1) for

all A′ with this specific structure and show that any A ⊂ Rn \ X contains a subset A′ ⊂ A. Then,

the probability for A′ is a lower bound, i.e., P
{
xN ∈ A | w0

}
≥ P

{
xN ∈ A′ | w0

}
, completing the

proof.

Consider a set A′ with the proposed structure. We will construct two measurable sets W and

R̃(w) such that {
w − r̃

∣∣ w ∈ W, r̃ ∈ R̃(w)
}
⊆ A′.
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Given their existence, we can bound

lim
N→∞

P
{
xN ∈ A′

∣∣ w0

}
≥ lim

N→∞

∫
W

P
{
wN − r̃N ∈ A′

∣∣wN

}
pSB(wN )dwN

≥ lim
N→∞

∫
W

∫
R̃(wN )

pr̃(r̃N |wN )pSB(wN )dr̃NdwN .

First, for some fixed ε > 0, let

W :=
{
w
∣∣ aTmw = bm,a

T
m′w < bm′ − ε,∀m′ 6= m

}
.

Because X is closed and bounded with a non-empty interior, this set must exist for some ε > 0.

Furthermore, from Boender et al. (1991, Lemma 2), there exists ε > 0 for which W has positive

(n − 1)-Lebesgue measure, i.e., µn−1(W) > 0, and thus, pSB(W) > 0. We avoid degenerate m by

assuming that X has no redundant constraints.

Next for any wN ∈ W, let

R̃(wN ) :=
{
wN − x

∣∣ x ∈ A′} .
Because µn(A′) > 0 and R̃(wN ) is a translation, µn(R̃(w)) > 0 must hold as well. It re-

mains to show that pr̃(r̃N |wN ) = pr(rN |wN )pξ(ξN |rN ,wN ) > 0 for all r̃N ∈ R̃(wN ). Since

aTm (wN − x) < 0 for all x ∈ A′, the normalized vector rN = (wN − x)/ ‖wN − x‖ is a valid

direction for the SB algorithm and pr(rN |wN ) > 0. Furthermore by assumption in the Theorem

statement, pξ(ξN |rN ,wN ) > 0 for ξN = ‖wN − x‖ > 0. Therefore pr̃(r̃N |wN ) > 0.

We now extend the proof to any arbitrary measurable set A ⊂ Rn \ X . Let σ({1, . . . ,M})
denote the power set, i.e., the set of all subsets of {1, . . . ,M}. Then, A can be written as a union

of a finite number of disjoint subsets:

A =
⋃

M⊆σ({1,...,M})

{
x ∈ A

∣∣∣ aTmx > bm,a
T
m′x ≤ bm′ ,∀m ∈M, ∀m′ /∈M

}
.

Since A is measurable, at least one of the subsets is also measurable. Furthermore, each of the

subsets can be characterized in the form A′, i.e., all points violating a specific constraint. Because

the subsets are disjoint, the probability of A is exactly equal to the sum of the probabilities of the

individual subsets, and therefore is positive.

Theorem 1 extends the main result from Boender et al. (1991) which proves that the SB al-

gorithm generates a stationary distribution which covers the entire boundary uniformly. Here,

we show that the Complement SB algorithm generates a stationary distribution which covers the

entire complement region. We remark that Algorithm 1 specifically applies to polyhedral sets X
and can be extended to convex sets defined by non-linear constraints which are prominent in many
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constrained optimization applications. In particular, in the Online Appendix, we demonstrate that

a modified version of Algorithm 1 can be used to generate points in the complement of ellipsoidal

feasible sets, thereby extending the main result from McDonald (1989).

Next, consider an optimization problem over a feasible set X̂ that is not known a priori. Instead,

we have a data set of feasible decisions D̂ ∼ P̂ drawn i.i.d. from a distribution supported over X̂ .

We also have a relaxation of the feasible set X . Using Algorithm 1, we can generate a data set

of infeasible decisions D ⊂ Rn \ X with steady state distribution P. With this augmented data

set of feasible and infeasible points, we then train a binary classifier D(x) : Rn → {0, 1} such that

D(x) = 1 for all x ∈ X̂ and D(x) = 0 for x ∈ Rn \ X̂ . Without loss of generality, suppose we

minimize the Binary Cross Entropy loss (Goodfellow et al., 2016):

min
D
− Ex̂∼P̂

[
logD(x̂)

]
− Ex∼P

[
log
(
1−D(x)

)]
. (2)

The results below shows that data generated from Algorithm 1 is sufficient to train this SB-based

classifier to accurately differentiate between X̂ and X .

Lemma 1 (Arjovsky and Bottou (2017)). Consider two distributions P and P̂ supported over

closed and disjoint sets. Then, the optimal D∗(x) of (2) satisfies D∗(x) = 1 for all x ∈ supp(P)

and D∗(x) = 0 for all x ∈ supp(P̂).

Lemma 1 states that for a binary classifier to provably predict points with perfect accuracy,

the data distributions of those points must have closed and disjoint supports. We use this result

to demonstrate that it is possible to construct a classifier that approximates the feasible set.

Proposition 1. Consider P̂ supported over a closed set X̂ . Let X be a closed polyhedron such that

X̂ ⊂ int(X ) and let P be the steady state distribution of the Markov chain generated by Algorithm 1

over X . Then the optimal classifier D∗(x) satisfies D∗(x) = 1 for x ∈ X̂ and D∗(x) = 0 for

x ∈ Rn \ X .

Proof. From Theorem 1, the steady state distribution satisfies P{A} > 0 for any measurable A ∈
Rn \ X . Thus, the steady state distribution is supported over the entire Rn \ X . Note that X̂ and

Rn \X are disjoint. From Lemma 1, the optimal classifier perfectly separates the two supports.

Proposition 1 states that given training data (i.e., P̂ supported over a hidden set X̂ and P
supported over the complement of a polyhedron Rn \ X that relaxes the hidden set), a classifier

can learn to perfectly distinguish from a hidden set and its polyhedral relaxation. We remark that

training via the Binary Cross Entropy loss function is not necessary and nearly any loss function

will suffice. However, we seek to distinguish between X̂ and Rn \ X̂ and the proposition is useful

insofar as the relaxation X is relatively tight. In our numerical experiments, we demonstrate that

the classifier does indeed accurately learn to identify points in X̂ as feasible and points in the

unknown band X \ X̂ as infeasible.
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Figure 2: Sample of points generated using an Exponential distribution pξ(ξ|r,w) = Exp(λ). The
left and right plots show N = 50 and N = 500 samples, respectively.

When implementing Algorithm 1, the choice of distribution pξ(ξ) will depend on the application.

In this work, we assume an Exponential distribution pξ(ξ) = Exp(λ) = λe−λξ. Our reasoning is

that when training a classifier D(x) to learn a hidden feasible set, we do not have access to P and P̂
but rather finite data sets D and D̂. It is important for the classifier to accurately learn the regions

near the boundary bd(X ) because the band near the boundary X \X̂ is the most challenging region
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to classify. Note that it is still important to generate some points far from the boundary in order

to satisfy Proposition 1. Using an exponential distribution ensures that we generate points with

high density near the boundary and low density further away. Figure 2 shows several stages of

Algorithm 1 for different values of λ.

4 Numerical analysis

We implement Algorithm 1 and the corresponding SB-based classifier to learn the hidden feasible

set X̂ . Given a data set of feasible decisions D̂ = {x̂i}Ni=0 ⊆ X̂ and a relaxation X , we augment our

data set by sampling infeasible decisions before training an SB-based classifier to predict whether

a decision is feasible or not with respect to X̂ .

Classical approaches towards constructing a classifier D(x) would not have a set of infeasible

points D and would thus be forced to use some form of unsupervised or generative modeling. We

implement two baseline models: a Gaussian Mixture Model (GMM) and Kernel Density Estimation

(KDE). Both are generative modeling techniques that use D̂ to estimate a probability distribution

over X̂ .

In our first set of experiments, we simulate fractional knapsack problems. We investigate the

relative tightness of the relaxation and show that when the relaxation is a reasonable approximation

of the hidden feasible set, our approach dominates the baseline models. We then investigate the

effect that the size of the data set (i.e., |D̂|) has on the ability to learn the feasible set and show

that by sampling from the infeasible region, our classifier achieves competitive performance with

the unsupervised baseline models while requiring an order-of-magnitude less feasible data. Finally,

we show that as the dimension of the problem increases, our approach still learns the hidden feasible

set while the baseline models collapse.

Finally, we conduct experiments on linearizations over a set of MIPLIB problems that have less

than 80 variables (miplib2017). Our SB-based classifier dominates the baseline models in terms

of accuracy and F1 score on nearly all instances, often by margins of 20%. Furthermore, we show

that for challenging instances with a large number of variables, the baseline models, once again,

completely collapse and either indiscriminately predict all test points as infeasible or all points as

feasible. In contrast, the SB-based classifier still demonstrates learning even for these challenging

problems.

4.1 Data and methods

Consider a hidden polyhedron X̂ = {x | Ax ≥ b}. To set up experiments, we first construct

a relaxation X = {x | Ax ≥ b − d}, where dm ∼ pd(d) is a random perturbation. To ensure

X̂ ⊂ X and that X is a relatively close approximation to X̂ , we use an Exponential distribution
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pd(d) = Exp(γ) with a scale parameter γ proportional to the polyhedral constraints, i.e.,

γ = γ0 max{‖b‖∞ , ‖a1‖∞ , ‖a2‖∞ , . . . , ‖aM‖∞}, (3)

for a constant γ0 > 0. This ensures that X is neither too tight nor too loose of a relaxation. We

refer to γ as the degree of the relaxation.

For each instance, we use a HR sampler to generate feasible points D̂ = {x̂i}Ni=0 ⊂ X̂ . Thus,

X and D̂ constitute the available information used to learn X̂ . Using Algorithm 1, we generate an

“infeasible” data set D = {xi}Ni=0 ⊂ Rn \ X and then train an off-the-shelf Gradient Boosted Tree

(GBT) to classify between D and D̂. We do not tune hyper-parameters for our classifier finding

that it outperforms the baseline models in most cases.

We consider two generative baseline models that estimate a probability distribution p̂(x) over

D̂. That is, we define a threshold parameter t = minx̂∈D̂ p̂(x̂) as the smallest probability such that

the data set consists entirely of feasible decisions. Then, the baseline classifier applies a threshold

rule over the generative model, i.e., D(x) = 1[x ∈ X ]1[p̂(x) ≥ t]. The first term in the classifier

simply checks if the decision lies within the given relaxation X , which is the intuitive use of the

polyhedral relaxation. We implement two baselines, a KDE and a GMM, and cross-validate over

their respective hyper-parameters using D̂. As these models typically do not scale efficiently to

higher dimensions (Theis et al., 2016), we consider Principal Component Analysis (PCA) to pre-

process training data by reducing the dimensionality of the problem. We implement our models

with and without PCA for ablation.

In order to evaluate our approach, we generate an out-of-sample test set of feasible points

D̂′ ⊂ X̂ and infeasible decisions D′ ⊂ X \ X̂ . Both data sets are generated with an HR sampler.

When generating D′, we simply reject points in X̂ for the Markov chain. Note that we do not

sample points in Rn \ X for testing as they would be trivially identified as infeasible given our

knowledge of X . Our final out-of-sample test set is D̂′ ∪ D′.

4.2 A fractional knapsack problem

Consider a fractional knapsack problem with the following hidden feasible set X̂ and polyhedral

relaxation X :

X̂ =

{
x

∣∣∣∣∣
n∑
i=1

xi ≤ 5, xi ≥ 0

}

X =

{
x

∣∣∣∣∣
n∑
i=1

xi ≤ 5 + d0, xi ≥ −di

}
.

We compare the SB-based supervised learning approach with the two generative baselines in three

different scenarios. We first analyze the degree of relaxation γ to assess the algorithms’ ability to
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Figure 3: Mean accuracy of the models from increasing the degree of the relaxation γ.
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Figure 4: Mean accuracy of the models as we increase the training set size N .

learn under different relaxations. We then investigate how the size of the data set (N) affects the

performance of the different algorithms. Finally, we assess the ability of the SB-based classifier to

learn in n-dimensional spaces. Each experiment varies a single parameter while holding the others

constant; we set γ0 = 0.1 (i.e., γ = 0.5), N = 200, n = 2, as the default settings. We fix λ = 0.5

when generating D using Algorithm 1. All results are averaged from 50 trials.

Unsupervised learning techniques that rely only on D̂ to learn an approximation of the feasible

set can mis-classify regions where there is no information. For example, regions outside X̂ but close

to D̂ may be mis-classified as feasible since a KDE and GMM would show a gradual drop in density

from the data. Generating points in Rn \ X offers a counter-balance to unsupervised techniques

that incorrectly mis-classify infeasible regions as feasible. This effect is particularly prominent
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when the relaxation is tighter as demonstrated in Figure 3 which plots the out-of-sample accuracy

as a function of γ. The SB-based classifier yields out-of-sample accuracy of approximately 91%

regardless of the value of γ. The unsupervised baselines, in contrast, show poor out-of-sample

accuracy when γ is small and slowly increase in performance as γ increases. Even at the largest

value, γ = 2.75, the SB-based classifier still outperforms the baseline models. Thus, unsupervised

learning only becomes competitive once the given relaxed bound is at least 50% larger than the

true hidden bound.

The unsupervised learning baselines require significantly more data than our SB-based classifier.

Figure 4 plots out-of-sample accuracy as a function of N . When N = 5, all of the methods are

equally poor and achieve approximately 63% out-of-sample accuracy. However, by using generated

infeasible data, the SB-based classifier converges to 93% out-of-sample accuracy withN ≥ 100. Note

that the baseline models are non-monotone due to the grid-search algorithm used to find the best

hyper-parameters of KDE and GMM, respectively. The optimal selection of these hyper-parameters

change as we increase the amount of data and thus, the baseline models require extensive tuning.

Nonetheless, even if we take the envelope of the KDE and GMM curves, we can still conclude

that our sampling approach is, on average, an order-of-magnitude more data-efficient than the

unsupervised baselines at learning the feasible set.

As previously shown, the unsupervised learning baselines require large data sets. As a result,

in higher dimensions, these models assign small probabilities to regions where there may not be

sufficient data. Thus, the differences in probabilities between regions where there are a small

number of points and where there are no points can become negligible and it may appear as if

these unsupervised learning models are applying nearly uniform (small) density over large areas.

To address this issue, we pre-process the data that is used to train the baselines using PCA in

order to reduce the dimension of the problem. While for n ≤ 8, the baselines have better accuracy

without PCA, reducing the dimensionality proves effective for n ≥ 9. When n is low, using PCA

leads to a loss of information for the unsupervised baselines.

More specifically, we consider increasing number of variables in the knapsack n, while holding

N = 200. Because KDE and GMMs are known to perform poorly in high-dimensions, we use PCA

in conjunction with the baseline models and our SB-based classifier to reduce the dimension by

25%. Figure 5 plots the accuracy, True Positive Rate (TPR) or recall, False Positive Rate (FPR),

and precision over increasing n. Overall, the SB-based classifier (without PCA) strictly dominates

all baselines on accuracy and precision. Furthermore, our classifier maintains a relatively flat

FPR (around 25%) that scales slowly with the number of variables. All of the baselines converge

to exactly 50% accuracy on the out-of-sample data demonstrating that they are not capable of

learning the feasible set with the given amount of data. Note that for the baselines, TPR, FPR,

and precision all decrease as n increases. When TPR and FPR are both 0, as in the case of the

baselines with no PCA for n ≥ 12, there are zero true and false positives and the models predict
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Figure 5: Evaluating accuracy, TPR (recall), FPR, and precision of the different models as we
increase the number of variables in the knapsack n. All models are are pre-processed using PCA
to reduce the dimension by 25%.

all points as infeasible.

4.3 Learning hidden feasible sets on MIPLIB instances

We next consider learning the feasible set of realistic benchmark problems, by drawing all in-

stances of optimization problems with less than 80 variables from the MIPLIB database (mi-

plib2017). We ignore problems marked “infeasible,” those with more than 5000 constraints (e.g.,

13



Table 1: Out-of-sample accuracy over instances of MIPLIB problems. We implement all models
with and without PCA (reducing dimension by 50%). The best performing models per MIPLIB
instance are highlighted.

Instance Without PCA With PCA

SB KDE GMM SB KDE GMM

ej 90.6 97.3 94.2 85.5 84.5 82.3
gen-ip002 90.0 58.3 58.9 64.1 61.1 61.7
gen-ip016 53.0 50.0 50.0 47.4 61.0 61.0
gen-ip021 93.6 54.9 59.0 78.2 54.1 52.3
gen-ip036 95.2 56.7 63.6 85.1 61.3 60.3
gen-ip054 89.0 60.6 65.5 67.4 53.6 51.1
gr4x6 79.9 53.0 55.2 67.1 61.3 56.8
markshare 4 0 94.9 59.8 55.0 76.9 61.1 54.5
markshare 5 0 86.7 61.0 64.1 65.1 63.2 61.3
neos5 85.6 50.0 50.0 84.1 51.2 51.7

Table 2: Out of sample TPR, precision, and F1-score over instances of MIPLIB problems. We
draw the best-performing version of each model with respect to PCA. The best performing models
in terms of F1-score are highlighted.

Instance TPR Precision F1-score

SB KDE GMM SB KDE GMM SB KDE GMM

ej 99.9 99.6 99.9 84.7 95.2 90.0 91.7 97.4 94.7
gen-ip002 93.5 98.0 96.5 90.5 57.0 57.5 92.0 72.1 72.1
gen-ip016 12.2 27.1 27.1 23.7 35.7 35.6 16.1 30.8 30.8
gen-ip021 98.2 9.74 18.0 90.7 70.0 99.9 94.3 17.1 42.6
gen-ip036 99.8 99.6 34.2 91.9 56.6 86.3 95.7 72.2 49.0
gen-ip054 87.4 21.4 32.0 90.3 99.3 97.8 88.8 35.2 48.2
gr4x6 88.6 99.8 94.4 79.6 57.4 55.7 83.9 72.9 70.1
markshare 4 0 97.7 99.3 10.2 92.9 56.7 100 95.2 72.2 18.5
markshare 5 0 92.4 99.8 28.3 85.7 58.2 90.0 88.9 73.5 43.1
neos5 94.9 96.9 100 81.8 51.6 51.0 87.9 67.3 67.5

supportcase21i), and those with large optimal values (e.g., flugpl), noting that these instances

typically have pathological feasible sets.

For each instance, we use the LP relaxation of the feasible set and convert it to inequality

form {x | Ax ≥ b}. However, these problems may yet have pathological low-dimensional shapes.

Consequently, we relax the right-hand-side terms by γ to obtain X̂ = {x | Ax ≥ b− γ1}. We set

γ as in (3), with γ0 = 1. We then construct hidden feasible sets X = {x | Ax ≥ b− γ1−d} where

dm ∼ pd(d) = Exp(γ) with the same γ as before. In each experiment, we generate training sets of

N = 4000 feasible points D̂ ⊂ X̂ and infeasible points D ⊂ Rn \ X . When generating D, we use

Algorithm 1 and fix pξ(ξ) = Exp(1) for all instances. All results are averaged over 40 trials.
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Table 1 shows the accuracy of each model on out-of-sample test sets with and without the use

of PCA (reducing the dimension by 50%). The best performing model for each MIPLIB instance

is highlighted. The SB-based classifier outperforms all other models in nearly every instance and is

often over 10% better than the best baseline model. Furthermore, the SB-based classifier performs

better without the use of PCA. This is because X̂ possesses structure (i.e., linear constraints) that

is useful for learning. Reducing the dimensionality of the problem through the application of PCA

may result in a loss of important information for training. However, PCA is useful for the baselines

and improves the performance of the KDE baseline on 10 instances. The GMM baseline sees a

similar improvement for 7 instances.

For many instances, the baseline models achieve an accuracy level that is near 50%. Thus, we

explore secondary metrics in order to understand the nature of these errors. Table 2 shows the

out-of-sample TPR, precision, and F1-score of the best performing SB-based classifier, KDE, and

GMM, respectively. For the majority of the instances, the KDE baseline observes a TPR greater

than 95% and precision less than 60% suggesting that the number of false negatives is relatively

small but the number of false positives is approximately equal to the number of true positives.

That is, the KDE baseline predicts nearly every test point to be feasible. We observe the opposite

behavior for the GMM baseline in that TPR is small but precision is greater than 90%. That

is, the GMM baseline predicts nearly every test point to be infeasible. Note that the SB-based

classifier does not display these biases as can be observed by the F1-score (which combines TPR

and precision). Here, our classifier consistently dominates both of the baseline models.

5 Conclusion

A potential extension of this work lies in sampling from the complement of sets that are prominent

in other areas of constrained optimization. To this end, in the Online Appendix, we demonstrate

that the Complement SB algorithm can be used to sample points from the complement of ellipsoidal

feasible sets. However, these results require several technical extensions. In future work, we hope

to generalize our results and prove that the Complement SB algorithm generates a stationary

distribution which covers the entire complement region for any arbitrary convex set.

Acknowledgements. The authors would like to thank the anonymous reviewer, associate editor,

and area editor for their helpful comments, and Philip Mar for helpful discussions on extending the

theory.

A Generalizing Complement SB to ellipsoids

The Complement SB algorithm can also be extended to sample over the complement of non-

polyhedral sets. Here, we focus specifically on ellipsoidal sets, where we develop an analogous
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Algorithm 2 Complement Shake-and-Bake for Ellipsoids

Require: Ellipsoidal set X ; Sampling distributions pw(w′|w), pr(r|w), pξ(ξ|r,w), Number of
points N ; Initialization ŵ0 ∈ bd(X ), i = 0, D = ∅
while i < N do

Randomly sample ri ∼ pr(r|wi) and ξi ∼ pξ(ξ|r,w).
Update data set D ← D ∪ {wi − ξiri}.
Let θi = max{t | wi + tri ∈ X}.
With probability pw(wi + θiri|wi), update wi+1 ← wi + θiri and increase i ← i + 1, else

wi+1 = wi.
end while

result to Theorem 1, i.e., the Complement SB covers the entire complement of the set. However,

note that the extension requires a different proof technique.

Assume that our set is a compact, full-dimensional ellipsoid defined as X =
{
x | (x− xr)

TP(x− xr) ≤ 1
}

,

where P ∈ Sn×n is a positive semi-definite matrix and xr ∈ Rn is the centroid. We can rewrite this

ellipsoid as X =
{
x | 12x

TAx + bTx + c ≤ 0
}

, where A ∈ Sn×n, b ∈ Rn, and c ∈ R are determined

by expanding the quadratic term.

Let f(x) = 1
2x

TAx + bTx + c. For every w ∈ bd(X ), the sub-gradient ∇f(w) = ATw + b

defines a supporting hyperplane of the ellipsoid, i.e.,

(ATw + b)Tw ≥ (ATw + b)Tx, ∀x ∈ X .

From Rockafellar (1970), we may also write X as an intersection of the tangent half-spaces, i.e.,

X = {x ∈ Rn | ∇f(w)Tx ≥ ∇f(w)Tx, ∀w ∈ bd(X )}.
The Complement SB algorithm for ellipsoids operates in the same manner as for polyhedra with

the only difference being in how we generate a direction vector for the next boundary point. When

X is a polyhedron, we identify the current facet and select a direction on the interior half-space of

that facet. When X is an ellipsoidal set, we select a direction on the interior tangent half-space.

This is summarized in Algorithm 2.

We first state the main theoretical result, that the entire complement is covered. However,

before proving the result, we present a technical lemma.

Theorem 2. Let µn denote the n-dimensional Lebesgue measure on a set. If pξ(ξ|r,w) > 0 for

all ξ ∈ (0,∞) and r,w ∈ Rn, then for any initial point w0 ∈ bd(X ) and any µn-measurable subset

A ⊂ Rn \ X ,

lim
N→∞

P
{
xN ∈ A

∣∣ w0

}
> 0. (4)

Recall that SB operates by generating direction vectors on the interior half-space defined by

the supporting hyperplanes. Points of the complement of the set are generated by moving in the
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negative direction, i.e., directions on the exterior half-space of the supporting hyperplanes. Thus

to generate points in a specific region A ⊂ Rn \ X , the set X must have supporting hyperplanes

that also act as separating hyperplanes between X and A.

Lemma 2. For any bounded set A′, let

W :=

{
w ∈ bd(X )

∣∣∣∣ ∃δ > 0 : inf
x∈A′

∇f(w)Tx ≥ ∇f(w)Tw + δ

}
(5)

denote the points for which there is a corresponding supporting hyperplane of X that strongly sep-

arates X and A′. If W is non-empty, then µn−1(W) > 0.

Proof. Select a point w0 ∈ W and let δ0 be the slack variable corresponding to the inequality for

w0 as defined in (5). Let xsup = supx∈A′ ‖x‖2 and let R = maxx,x′∈X ‖x− x′‖2 be the maximal

diameter of X . Finally, let

E :=

{
w0 − ε

∣∣∣∣∣ ‖ε‖2 < δ0
‖∇f(w0)‖2 + ‖A‖2,2 (R+ xsup)

}
∩ bd(X )

denote the intersection of the boundary and a ball centered on w0. Note that µn−1(E) > 0 since

it is the intersection of a ball and bd(X ). Thus, we only need to prove for each point in E , that

the supporting hyperplane of X is also a separating hyperplane, i.e., E ⊂ W. We show for any

w0 − ε ∈ E ,

∇f(w0 − ε)Tx > ∇f(w0 − ε)T(w0 − ε), ∀x ∈ A′.

We proceed as follows:

∇f(w0 − ε)T(w0 − ε) (6)

= (ATw0 −ATε + b)Tw0 − (ATw0 −ATε + b)Tε (7)

= (ATw0 + b)Tw0 − εTA(w0 − ε)− (ATw0 + b)Tε (8)

= ∇f(w0)
Tw0 − εTA(w0 − ε)−∇f(w0)

Tε (9)

≤ ∇f(w0)
Tx− δ0 − εTA(w0 − ε)−∇f(w0)

Tε ∀x ∈ A′ (10)

Inequality (10) follows from w0 ∈ W and applying (5). We then apply the Cauchy-Schwartz

Inequality, decompose
∥∥εTA∥∥

2
using the matrix norm, and bound ‖w0 − ε‖2 by the maximal

diameter:

RHS(10) ≤ ∇f(w0)
Tx− δ0 +

∥∥∥εTA∥∥∥
2
‖w0 − ε‖2 + ‖∇f(w0)‖2 ‖ε‖2 ∀x ∈ A′ (11)

≤ ∇f(w0)
Tx− δ0 + ‖ε‖2 ‖A‖2,2R+ ‖∇f(w0)‖2 ‖ε‖2 ∀x ∈ A′ (12)
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Note that for any w0−ε ∈ W, there exists a difference ∆δ0 > 0 such that δ0 = ∆δ0+‖ε‖ (‖∇f(w0)‖2+
‖A‖2,2R+ ‖A‖2,2 xsup). Furthermore for any x ∈ A′, εTAx ≤ ‖ε‖2 ‖A‖2,2 xsup. Substituting these

two terms into (12) yields

RHS(12) = ∇f(w0)
Tx−∆δ0 − ‖ε‖2 ‖A‖2,2 x

sup ∀x ∈ A′

≤ ∇f(w0)
Tx−∆δ0 − εTAx ∀x ∈ A′

= ∇f(w0 − ε)Tx−∆δ0 ∀x ∈ A′

thus completing the proof.

Lemma 2 is the ellipsoid analogue of Boender et al. (1991, Lemma 2), which proved a similar

result for polyhedra. With this, we now prove Theorem 2.

Proof of Theorem 2. Without loss of generality, let r̃ = ξr and pr̃(r̃|w) = pr(r|w)pξ(ξ|r,w). Let

pSB(w) denote the stationary distribution of the hidden state SB algorithm. Let A′ ⊂ Rn \ X
denote a µn-measurable set that can be strongly separated from X , i.e., W as defined in (5) is

non-empty. We first prove (4) for all A′ with this specific structure and show that any A ⊂ Rn \X
contains a subset A′ ⊂ A. Then, the probability for A′ is a lower bound, i.e., P

{
xN ∈ A | w0

}
≥

P
{
xN ∈ A′ | w0

}
, completing the proof.

Consider a set A′ with the proposed structure. We will construct two measurable sets W and

R̃(w) such that {
w − r̃

∣∣ w ∈ W, r̃ ∈ R̃(w)
}
⊆ A′.

Given their existence, we can bound

lim
N→∞

P
{
xN ∈ A′

∣∣ w0

}
≥ lim

N→∞

∫
W

P
{
wN − r̃N ∈ A′

∣∣wN

}
pSB(wN )dwN

≥ lim
N→∞

∫
W

∫
R̃(wN )

pr̃(r̃N |wN )pSB(wN )dr̃NdwN .

First, let W be defined as in (5) as the set of points on the boundary of X for which the

supporting hyperplane is a separating hyperplane between X andA′. From Lemma 2, µn−1(W) > 0.

Next for any wN ∈ W, let

R̃(wN ) :=
{
wN − x

∣∣ x ∈ A′} .
Because µn(A′) > 0 and R̃(wN ) is a translation, we must have µn(R̃(w)) > 0 as well. It re-

mains to show that pr̃(r̃N |wN ) = pr(rN |wN )pξ(ξN |rN ,wN ) > 0 for all r̃N ∈ R̃(wN ). Since
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∇f(wN )T (wN − x) ≤ 0 for all x ∈ A′, the normalized vector rN = (wN − x)/ ‖wN − x‖ is a

valid direction with pr(rN |wN ) > 0. Furthermore, by assumption in the Theorem statement,

pξ(ξN |rN ,wN ) > 0 for ξN = ‖wN − x‖ > 0. Therefore pr̃(r̃N |wN ) > 0.

We now extend the proof to any arbitrary measurable set A ⊂ Rn \X by showing that every A
contains a subset of the structure of A′, i.e., measurable and strongly separated from X . First, for

any w ∈ bd(X ), let

A(w) :=
{
x ∈ A

∣∣ ∇f(w)Tx ≥ ∇f(w)Tw
}

denote the intersection of A with a supporting hyperplane of X . Now observe that the measure of

A admits a union bound using the (infinite) set of supporting hyperplanes:

µn(A) ≤
∑

w∈bd(X )

µn (A(w))

Because µn(A) > 0, at least one of the above subsets has positive measure. Select one such subset

and let w0 be the corresponding boundary point. It remains to construct A′ ⊂ A(w0) such that

A′ is measurable and strongly separated from X . For any κ ∈ Z+, let

Hκ :=

{
x

∣∣∣∣ ∇f(w0)
Tx ≥ ∇f(w0)

Tw0 +
1

κ

}
.

and Bκ = A(w0) ∩ Hκ. Each Bκ is strongly separated from X , meaning it has the structure

required to satisfy Lemma 2 as assumed by A′, and we argue that there must exist κ ∈ Z+ such

that µn(Bκ) > 0.

To observe this, note that A(w0) = ∪∞κ=1Bκ is a union of ascending sets. By the continuity of

the Lebesgue measure

µn (A(w0)) = µn

( ∞⋃
κ=1

Bκ

)
= lim

κ→∞
µn (Bκ) .

For any ε > 0, there must exist κ such that |µn(A(w0)) − µn(Bκ)| < ε. Setting ε < µn(A(w0))

implies that µn(Bκ) > 0. Let A′ be equal to any such subset. Therefore, any measurable set A
contains a measurable subset A′ of the required structure. Then, P

{
xN ∈ A | w0

}
≥ P

{
xN ∈

A′ | w0

}
> 0, completing the proof. �
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