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We develop a generalized inverse optimization framework for fitting the cost vector of a single linear optimiza-

tion problem given an ensemble of observed decisions. We unify multiple variants in the inverse optimization

literature under a common template and derive assumption-free and exact solution methods for each variant.

We then extend a goodness-of-fit metric previously introduced for the problem with a single observed decision

to this new setting, proving and numerically illustrating several important properties. Finally, to illustrate

our framework, we develop a novel inverse optimization-driven procedure for automated radiation therapy

treatment planning. Here, the inverse optimization model leverages the combined power of an ensemble of

dose predictions produced by different machine learning models to construct clinical treatment plans that

better trade off between the competing clinical objectives that are used for plan evaluation in practice.
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1. Introduction

Motivated by the growing availability of data that represents decisions, there is an increasing inter-

est in the use of inverse optimization to gain insight into decision-generating (e.g., optimization)

processes. Inverse optimization determines optimization model parameters that render a given data

set of observed decisions minimally sub-optimal for the model. The inverse optimization literature

studies a range of model types that can be classified along multiple dimensions, including the char-

acteristics of the data set (e.g., a single data point versus multiple, or whether the points are all

strictly feasible), the type of the forward optimization problem (e.g., a linear, convex, or integer
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program), and the loss function in the inverse problem itself. In this paper, we study inverse opti-

mization given an arbitrary data set of decisions for a single linear program. We develop methods

to impute the best-fit cost vector for a variety of different loss measures under a general setting

(i.e., no assumptions on data), while also introducing efficient techniques under mild assumptions.

The setting of multiple observed decisions for a single forward model is motivated methodolog-

ically from ensemble methods in machine learning. Consider the canonical example of a random

forest that averages the predictions obtained from a set of decision trees that are each trained

on subsets of the data (Breiman 2001). Each individual tree, by training on a different subset,

specializes to a specific region of the feature space, and the ensemble then averages out the over-fit

of the individual models. The analogy in inverse optimization is the need to learn from multiple

decision-makers each attempting to solve the same underlying optimization problem; they each

propose a different solution and imputing the costs implicitly leads to a consensus (Troutt 1995).

Our specific motivating application is the automated construction of radiation therapy treatment

plans to treat cancer patients. A common framework for this task is a two-stage approach known as

knowledge-based automated planning (KBAP), where a machine learning model predicts a desir-

able (but typically infeasible) dose distribution and inverse optimization learns model parameters

that can generate a similar, physically deliverable treatment through the solution of a forward

problem (Sharpe et al. 2014, McIntosh et al. 2017, Babier et al. 2018a). Treatments are evaluated

using a set of clinical evaluation criteria and different prediction models are typically biased towards

certain criteria (Babier et al. 2018b). In this paper, we apply our inverse optimization methods to

develop a novel KBAP pipeline that ensembles multiple predictions to obtain a consensus treatment

plan that achieves better trade-offs on clinical criteria than any individual model.

Methodologically, our work extends the single observation (feasible) generalized inverse opti-

mization framework of Chan et al. (2018) to the case of multiple observations (with no assumptions

on feasibility). Our framework is founded on a flexible model template that can be specialized to

multiple different inverse optimization models via appropriate specification of hyperparameters.
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The first variant, known as the absolute duality gap, is well-studied in the multi-point inverse

optimization literature, commonly in the context of a more general inverse convex optimization

(see Bertsimas et al. (2015), Esfahani et al. (2018) for methodology and Zhao et al. (2015), Saez-

Gallego and Morales (2017) for applications). The second, known as the relative duality gap, has

only been studied in single-point inverse linear optimization (Chan et al. 2014, 2018). Finally, we

generalize a previously developed goodness-of-fit metric for inverse optimization (Chan et al. 2018)

to the case of multiple observations. Altogether, we construct a unified framework for model fitting

and evaluation in inverse linear optimization for an arbitrary data set.

The specific contributions of our paper are as follows:

1. We develop an inverse linear optimization model that generalizes many approaches in the

literature and is applicable to arbitrary data sets of decisions for a single forward optimization

problem. This model is expressed in terms of a set of hyperparameters used to derive both

general and application-specific model variants.

2. We develop new exact, assumption-free solution methods for each of the different variants of

our generalized model. Under mild data assumptions, we demonstrate how geometric insights

from linear optimization can lead to efficient and even analytic solution approaches.

3. We propose a goodness-of-fit metric measuring the model-data fit between a forward problem

and decision data. We prove and illustrate several intuitive properties of the metric, including

optimality with respect to the inverse optimization model, boundedeness, and monotonicity.

4. We apply our framework to implement the first ensemble KBAP pipeline, capable of using

multiple predictions to construct treatment plans for head-and-neck cancer that achieve better

clinical trade-offs compared to traditional single-point KBAP plans. We then show how ρ

provides a domain-independent validation of our final model.

Proofs are omitted in this work unless particularly relevant.

2. Background on generalized inverse linear optimization

We first review the formulation and main results from Chan et al. (2018), who introduced an inverse

optimization model for linear optimization problems (LPs) that unifies both decision and objective
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space inverse linear optimization models, but only for a data set with a single feasible observed

decision. Let x,c ∈ Rn denote the decision and cost vectors, respectively, and A ∈ Rm×n,b ∈ Rm

denote the constraint matrix and right-hand side vector, respectively. Let I = {1, . . . ,m} and J =

{1, . . . , n} index the constraints and decision variables respectively. Let P = {x |Ax≥ b} be the

feasible set, and suppose there are no redundant constraints. We define FO(c) : minx{cTx | x∈P}

to be the forward optimization problem. For a feasible observed decision x̂∈P, the (single-point)

generalized inverse linear optimization problem is

GIO({x̂}) : minimize
c,y,ε

‖ε‖ (1a)

subject to ATy = c, y≥ 0 (1b)

cTx̂ = bTy + cTε (1c)

‖c‖N = 1 (1d)

c∈ C,ε∈ E . (1e)

In formulation (1), y ∈Rm represents the dual vector for the constraints of the forward problem.

The vector ε ∈ Rn represents a perturbation that brings x̂ to a point x∗ = x̂ − ε that satisfies

strong duality (1c). The norm in the objective is general and can be chosen based on application-

specific considerations. Constraints (1b) ensure dual feasibility. Constraint (1d) is a normalization

constraint to prevent the trivial solution of c = 0, where ‖·‖N denotes an arbitrary norm that may

differ from the one in the objective. Finally, constraints (1e) define application-specific perturbation

and cost vectors via the sets E and C, respectively. The tuple (‖·‖ ,‖·‖N ,C,E) forms the inverse

optimization model hyperparameters. By selecting these hyperparameters appropriately, GIO({x̂})

was shown to specialize into models that minimize various different error measures.

Although formulation (1) is non-convex, it admits a closed-form solution, which can be identified

by determining the projection from x̂ to the boundary of P of minimum distance as measured by

‖·‖. Specifically, let Hi =
{
x
∣∣ aT

i x = bi
}

be the hyperplane corresponding to the ith constraint and

πi(x̂) = arg min
x∈Hi

‖x− x̂‖ (2)



A. Babier et al.: Model Fitting in Generalized Inverse Linear Optimization: Applications in Radiation Therapy
5

be the projection of x̂ to Hi. The hyperplane projection problem has an analytic solution πi(x̂) =

x̂− aTi x̂−bi
‖ai‖D

ν(ai), where ‖·‖D is the dual norm of ‖·‖ and ν(ai)∈ arg max‖v‖=1

{
vTai

}
(Mangasarian

1999) . Theorem 1 (Chan et al. 2018) leverages this to obtain an optimal solution to formulation (1).

Theorem 1 (Chan et al., 2018). Let x̂ ∈ P, i∗ ∈ arg mini∈I

{
aTi x̂−bi
‖ai‖D

}
, and ei be the ith unit

vector. There exists an optimal solution to GIO({x̂}) of the form

(c∗,y∗,ε∗) =

(
ai∗

‖ai∗‖N
,

ei∗

‖ai∗‖N
, x̂−πi∗(x̂)

)
. (3)

If x̂ ∈ P, then by Theorem 1, an optimal cost vector describes a supporting hyperplane (i.e.,

H=
{
x
∣∣ c∗Tx = bTy∗

}
) that also corresponds to a constraint of the forward problem.

3. Generalized inverse linear optimization with arbitrary data sets

In this section, we extend the model and results of the previous section to the case of multiple

observed decisions with no restriction on their feasibility. Let X̂ = {x̂1, . . . , x̂Q} represent a data set

indexed byQ= {1, . . . ,Q}. We will determine a single cost vector c∗ to minimize the aggregate error

induced by all points with respect to FO(c∗). To measure the error, we introduce a perturbation

vector εq for q ∈Q. The multi-point generalized inverse linear optimization problem is

GIO(X̂ ) : minimize
c,y,ε1,...,εQ

Q∑
q=1

‖εq‖ (4a)

subject to ATy = c, y≥ 0 (4b)

cTx̂q = bTy + cTεq, ∀q ∈Q (4c)

‖c‖N = 1 (4d)

c∈ C,εq ∈ Eq, ∀q ∈Q. (4e)

Constraints (4b) and (4d) are carried from the single-point model, while (4c) and (4e) are multi-

point extensions of (1c) and (1e) respectively, ensuring that for each q ∈ Q, the data points x̂q

achieve strong duality with respect to c after being perturbed by εq ∈ Eq. The objective minimizes

the sum of the norms of the individual perturbation vectors.

Similar to formulation (1), GIO(X̂ ) is non-convex due to the bilinear terms in (4c) and the

normalization constraint (4d). We first show that GIO(X̂ ) specializes to two different objective

space variants, before developing tailored and tractable solution methods.
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3.1. Absolute duality gap

The absolute duality gap method for inverse optimization minimizes the aggregate duality gap

between the observed primal objective for each decision and the dual optimal value for the problem:

GIOA(X̂ ) : minimize
c,y,ε1,...,εQ

Q∑
q=1

|εq| (5a)

subject to ATy = c, y≥ 0 (5b)

cTx̂q = bTy + εq, ∀q ∈Q (5c)

‖c‖N = 1. (5d)

This model specializes GIO(X̂ ) to measure error in terms of scalar duality gap variables (ε1, . . . , εQ).

It can be recovered from the generalized model by appropriately selecting hyperparameters.

Proposition 1. Let µ(c)∈Rn be a parameter satisfying ‖µ(c)‖∞ = 1 and µ(c)
T
c = 1. A solution(

c∗,y∗, ε∗1, . . . , ε
∗
Q

)
is optimal to GIOA(X̂ ) if and only if

(
c∗,y∗, ε∗1µ(c∗), . . . , ε∗Qµ(c∗)

)
is optimal to

GIO(X̂ ) with hyperparameters (‖·‖ ,‖·‖N ,C,E1, . . . ,EQ) = (‖·‖∞ ,‖·‖N ,Rn,{ε1µ(c)} , . . . ,{εQµ(c)}).

Proposition 1 shows that the specialization of GIO(X̂ ) to GIOA(X̂ ) depends on each εq being

a rescaling of a parameter µ(c) dependent only on the cost vector. Note that µ(c) is just a vehicle

to aid the specialization of GIO(X̂ ), and is useful primarily to interpret the solutions of GIOA(X̂ )

in the broader context of GIO(X̂ ). For all c satisfying ‖c‖N = 1, µ(c) must satisfy ‖µ(c)‖∞ = 1

and µ(c)
T
c = 1. Given a specific choice of ‖·‖N , we can then propose a structured form for µ(c).

For example, if ‖·‖N = ‖·‖1, we can set µ(c) = sgn (c) to be the sign vector of c, ensuring that the

two conditions on µ(c) are satisfied for all c with ‖c‖1 = 1. Alternatively, if ‖·‖N = ‖·‖∞, we can

set µ(c) = sgn (cj∗)ej∗ to be a signed j∗-th unit vector, where j∗ ∈ arg maxj∈J {|cj|}.

General solution method. Since the normalization constraint is the sole non-convexity in

GIOA(X̂ ), this model can be solved exactly by polynomial decomposition. Here, effeciency depends

on the choice of ‖·‖N (e.g., if ‖·‖N = ‖·‖∞, then GIOA(X̂ ) can be solved by solving 2n LPs).
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Theorem 2. Let
(
c∗,y∗, ε∗1, . . . , ε

∗
Q

)
be optimal to GIOA(X̂ ) under ‖·‖N = ‖·‖∞. There exists

j ∈J such that
(
c∗,y∗, ε∗1, . . . , ε

∗
Q

)
is also optimal to GIOA(X̂ ; j), defined as:

GIOA(X̂ ; j) : minimize
c,y,ε1,...,εQ

Q∑
q=1

|εq|

subject to ATy = c, y≥ 0

cTx̂q = bTy + εq, ∀q ∈Q

(cj = 1)∨ (cj =−1)

|ck| ≤ 1, ∀k ∈J /{j}.

(6)

The disjunctive problem (6), which is written for each j, can be separated into two LPs (one with

the constraint cj = 1 and the other with cj =−1), thus totaling 2n LPs. In general though, such as

when ‖·‖N = ‖·‖1, an exponential number of LPs will be required. However, there are special cases

where the the 1-norm is an efficient choice for ‖·‖N , such as when the cost vector is non-negative.

Next, we discuss several special cases that simplify the solution approach for GIOA(X̂ ).

Non-negative cost vectors. In many real-world applications, feasible cost vectors should be

non-negative (i.e., C ⊆Rn+). Here, it is advantageous to set ‖·‖N = ‖·‖1, because the normalization

constraint becomes cT1 = 1 and GIOA(X̂ ) simplifies to a single LP.

Feasible observed decisions. Most inverse optimization literature focuses on the situation

where all observed decisions are feasible for the forward model (i.e., X̂ ⊂ P). In this case, X̂ can be

replaced by the singleton {x̄}, where x̄ is the centroid of the points in X̂ . A similar result was first

presented in Goli (2015, Chapter 4), but for a model with a different normalization constraint that

did not prevent trivial solutions. We present the analogous result in the context of our model (5).

Proposition 2. If X̂ ⊂ P and x̄ is the centroid of X̂ , GIOA(X̂ ) is equivalent to GIOA({x̄}).

Proposition 2 combined with Theorem 1 implies that GIOA(X̂ ) is solved analytically when X̂ ⊂ P.

Infeasible observed decisions. Finally, we address scenarios where the observed decisions all

lie outside of the feasible region. We first consider the case where X̂ consists of a single, infeasible

observed decision, x̂, in which case GIOA({x̂}) possesses an analytic solution.
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Proposition 3. Assume x̂ /∈P.

1. If x̂ satisfies aT
i x̂> bi for some i∈ I, then there also exists i∗ ∈ I such that ỹ is

ỹi =
1

aT
i x̂− bi

, ỹi∗ =
1

bi∗ −aT
i∗x̂

, ỹk = 0 ∀k ∈ I \ {i, i∗} (7)

and c̃ = ATỹ. The corresponding normalized solution (c∗,y∗, ε∗) = (c̃/‖c̃‖N , ỹ/‖c̃‖N ,0) is an

optimal solution to GIOA({x̂}) and the optimal value is 0.

2. If Ax̂≤ b, there exists i∗ ∈ I such that (3) is an optimal solution to GIOA({x̂}).

Proposition 3 provides geometric insights regarding the structure of optimal solutions. That is,

in objective space inverse optimization, all points that lie on a level set of a cost vector yield the

same duality gap. Recall that the hyperplane H =
{
x
∣∣ c∗Tx = bTy∗

}
is a supporting hyperplane

of P, or in other words, a level set of the cost vector with zero duality gap. If x̂ /∈ P but satisfies

aT
i x̂> bi for some i, then there always exists a supporting hyperplane that intersects with x̂ (see

Figure 1a for an example). If Ax̂≤ b, then no such supporting hyperplane exists. Instead, we show

that with the alternate forward problem FOA(c) := min
x

{
−cTx

∣∣Ax≤ b
}

, obtained by reversing

the signs of all constraints and the cost vector, the single-point inverse problem for x̂ and FOA(c)

is equivalent to the original problem. Since x̂ is feasible for FOA(c) by definition, GIOA({x̂}) can

be solved via Theorem 1. The geometric insight is that the constraints of FOA(c) correspond to

the nearest supporting hyperplanes of FO(c). Solving one problem solves the other (see Figure 1b,

where x̂ projects to an infeasible point with respect to FO(c) that nevertheless has no duality

gap). This geometric approach can be extended to the case of multiple infeasible decisions.

Corollary 1. Suppose that Ax̂q ≤ b for all q ∈ Q, and X̂ ⊂ Rn \ P. Let x̄ be the centroid of

X̂ . Then, GIOA(X̂ ) for the forward problem FO(c) is equivalent to GIOA({x̄}) for FOA(c).

3.2. Relative duality gap

The relative duality gap variant minimizes the sum of the ratios between the duality gap for each

decision and the imputed dual optimal value for the forward problem:

GIOR(X̂ ) : minimize
c,y,ε1,...,εQ

Q∑
q=1

|εq − 1| (8a)
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Figure 1 GIOA({x̂}) with FO(c) shaded and FOA(c) hatched. Illustration of Proposition 3.

(a) Illustration of Proposition 3 Part 1.
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(b) Illustration of Proposition 3 Part 2.
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subject to ATy = c, y≥ 0 (8b)

cTx̂q = εqb
Ty, ∀q ∈Q (8c)

‖c‖N = 1. (8d)

Duality gap ratio variables εq replace the perturbation vectors used in the general formulation (4).

These variables are well-defined except when the imputed forward problem has an optimal value

of 0. In this subsection, we assume b 6= 0 and that if bTy = 0 for some feasible y, then εq := 1.

Proposition 4. Let µ(c) be a function that satisfies ‖µ(c)‖∞ = 1 and µ(c)
T
c = 1 for all

c. A solution
(
c∗,y∗, ε∗1, . . . , ε

∗
Q

)
for which bTy∗ 6= 0, is optimal to GIOR(X̂ ) if and only if(

c∗,y∗,bTy∗ (ε∗1− 1)µ(c∗), . . . ,bTy∗
(
ε∗Q− 1

)
µ(c∗)

)
is optimal to GIO(X̂ ) with hyperparameters

(‖·‖ ,‖·‖N ,C,E1, . . . ,EQ) =
(
‖·‖∞ /|b

Ty∗|,‖·‖N ,R
n,
{
bTy∗ (ε1− 1)µ(c∗)

}
, . . . ,

{
bTy∗ (εQ− 1)µ(c∗)

})
.

General solution method. Unlike the absolute duality gap problem, which is non-convex only

because of the normalization constraint, GIOR(X̂ ) possesses an additional non-convexity due to a

bilinear term in the duality gap constraint (8c). We first address the bilinearity by introducing three

sub-problems. We then use polyhedral decomposition to address the normalization constraint.



A. Babier et al.: Model Fitting in Generalized Inverse Linear Optimization: Applications in Radiation Therapy
10

Proposition 5. Consider the following three problems:

GIO+
R(X̂ ;K) :

min
c,y,

ε1,...,εQ

Q∑
q=1

|εq − 1|

s. t. ATy = c, y≥ 0

cTx̂q = εq,∀q ∈Q

bTy = 1

‖c‖N ≥K,

(9)

GIO−R(X̂ ;K) :

min
c,y,

ε1,...,εQ

Q∑
q=1

|εq − 1|

s. t. ATy = c, y≥ 0

cTx̂q =−εq,∀q ∈Q

bTy =−1

‖c‖N ≥K,

(10)

GIO0
R(X̂ ;K) :

min
c,y

0

s. t. ATy = c, y≥ 0

cTx̂q = 0,∀q ∈Q

bTy = 0,yT1 = 1

‖c‖N ≥K.

(11)

Let z+ be the optimal value of GIO+
R(X̂ ;K) if it is feasible, otherwise z+ =∞. Let z− and z0

be defined similarly for GIO−R(X̂ ;K) and GIO0
R(X̂ ;K), respectively. Let z∗ = min{z+, z−, z0}

and let
(
c∗,y∗, ε∗1, . . . , ε

∗
Q

)
be an optimal solution for the corresponding problem. We assume

ε∗1 = · · · = ε∗Q = 1 for GIO0
R(X̂ ;K). There exists K such that the optimal value of GIOR(X̂ ) is

equal to z∗ and an optimal solution to GIOR(X̂ ) is
(
c∗/‖c∗‖N ,y∗/‖c∗‖N , ε∗1, . . . , ε∗Q

)
.

Proof of Proposition 5. Let (ĉ, ŷ) be an optimal solution to GIOR(X̂ ) and let

K =


1/|bTŷ| if bTŷ 6= 0

1/ŷT1 otherwise.

(12)

We omit the variables (ε1, . . . , εQ) when writing optimal solutions for conciseness. First, we show

that (ĉ, ŷ) maps to a corresponding feasible solution for one of GIO+
R(X̂ ;K), GIO−R(X̂ ;K), or

GIO0
R(X̂ ;K) with the same objective value. Conversely, every feasible solution to formulations (9)–

(11) has a corresponding feasible solution in GIOR(X̂ ) with the same objective value.

First, suppose bTŷ > 0 and consider (c̃, ỹ) = (ĉ/bTŷ, ŷ/bTŷ). This solution is feasible to

GIO+
R(X̂ ;K) as bTỹ = 1 and ‖c̃‖N = K. Furthermore, by substituting c̃ = ĉ/bTŷ, we see

that the objective value of this solution for GIO+
R(X̂ ;K) is equal to the optimal value for

GIOR(X̂ ):
∑Q

q=1

∣∣c̃Tx̂q − 1
∣∣ =

∑Q

q=1

∣∣(ĉTx̂q)/ (bTŷ)− 1
∣∣. Similarly, when bTŷ < 0, we construct

(c̃, ỹ) = (ĉ/|bTŷ|, ŷ/|bTŷ|), which is feasible to GIO−R(X̂ ;K) and incurs the same objective value
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as the optimal value of GIOR(X̂ ). Finally, if bTŷ = 0, then the optimal value of GIOR(X̂ ) is 0. Let

(c̃, ỹ) = (ĉ/ŷT1, ŷ/ŷT1). It is straightforward to show that this solution is feasible for GIO0
R(X̂ ;K).

Thus, an optimal solution to GIOR(X̂ ) can be scaled to construct a solution that is feasible for

exactly one of the formulations (9)–(11).

The converse is proven by showing that every feasible solution of (9)–(11) can be scaled to a

feasible solution of GIOR(X̂ ). Let (c̃, ỹ) be a feasible solution to one of (9)–(11), and let (ĉ, ŷ) =

(c̃/‖c̃‖N , ỹ/‖c̃‖N). This solution is feasible for GIOR(X̂ ) with the same objective function value.

In terms of objective value, all feasible solutions of GIO+
R(X̂ ;K), GIO−R(X̂ ;K), and GIO0

R(X̂ ;K)

have a one-to-one correspondence with feasible solutions of GIOR(X̂ ) and the best optimal solution

to formulations (9)–(11) can be scaled to an optimal solution for GIOR(X̂ ). �

While GIOR(X̂ ) can be reformulated into three sub-problems, there are two primary concerns.

First, the proof of Proposition 5 requires selecting an appropriate value for the parameter K. In

practice, an appropriate value is selected by solving the following auxiliary problem:

maximize
y

max
{
|bTy|,yT1

}
subject to

∥∥ATy
∥∥
N

= 1, y≥ 0.

(13)

We refer to formulation (13) as the auxiliary problem for GIOR(X̂ ). The auxiliary problem can

be written as three optimization problems, each with the same constraints as (13) but a different

objective: bTy, −bTy, and yT1. Since the auxiliary problem has a normalization constraint similar

to the one in GIOA(X̂ ), we can use the same methods to solve it. Let K∗ be defined as the

reciprocal of the optimal value of the auxiliary problem. Note that K∗ is well-defined, because any

feasible y to (13) must satisfy yT1> 0. This parameter value is then sufficient to solve GIOR(X̂ ).

Corollary 2. Let z∗ be the optimal value of the auxiliary problem (13) and let K∗ = 1/z∗.

Then, Proposition 5 holds for any K ≥K∗.

The second concern is that GIO+
R(X̂ ;K), GIO−R(X̂ ;K), and GIO0

R(X̂ ;K) are still non-convex

due to the normalization constraint ‖c‖N ≥K. As in GIOA(X̂ ) however, with an appropriate choice
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of ‖·‖N , these problems can be solved via polyhedral decomposition. For example if ‖·‖N = ‖·‖∞,

GIO+
R(X̂ ;K) is solved by enumerating over the 2n linear programs GIO+

R(X̂ ;K,j), where the norm

constraint is replaced by cj ≥K or cj ≤−K. The process is equivalent to that used in Theorem 2.

We repeat this approach to decompose GIO−R(X̂ ;K) and GIO0
R(X̂ ;K).

Solving GIOR(X̂ ) is often computationally taxing, due to the fact that we must first determine

an appropriate K before considering the reformulations into GIO+
R(X̂ ;K), GIO−R(X̂ ;K), and

GIO0
R(X̂ ;K). In practice, it is often easier to try solving an LP relaxation of these sub-problems

(by removing the normalization constraint). If an optimal solution of the LP relaxation can be

found for which the optimal c∗ 6= 0, then this is often sufficient for an application. When the LP

relaxation fails to do so, we must consider the more complex general method. In the rest of this

section, we examine several cases leading to more efficient solution approaches for GIOR(X̂ ).

Feasible observed decisions. Consider the scenario where the observed decisions are all fea-

sible for the forward problem. As in the absolute duality gap case, the relative duality gap model

reduces to a single-point problem, which has an analytic solution using Theorem 1.

Proposition 6. If X̂ ⊂ P and x̄ is the centroid of X̂ , GIOR(X̂ ) is equivalent to GIOR({x̄}).

Infeasible observed decisions. For a single infeasible point, the solution to GIOR({x̂}) is

broken into two cases. The proofs (omitted) are similar to the absolute duality gap case.

Proposition 7. Assume x̂ /∈P.

1. If x̂ satisfies aT
i x̂ > bi for some i ∈ I, then there exists i∗ ∈ I such that (7) is an optimal

solution to GIOR({x̂}) and the optimal value is 0.

2. If Ax̂≤ b, there exists i∗ ∈ I such that (3) is an optimal solution to GIOR({x̂}).

Proposition 7 is the relative duality gap analogue of Proposition 3, as it provides an analytic

solution for GIOR({x̂}) when x̂ is infeasible. Thus, geometric insights similar to those of the

absolute duality gap case are applicable here. Furthermore, Part 2 of Proposition 7 can be extended

to multiple observations. The proof (omitted) is derived by extending the proof of Proposition 7

in the same way that Corollary 1 extends the proof of Proposition 3.
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Table 1 Summary of the two variants of GIO(X̂ ).

‖·‖ ‖·‖N C Eq,∀q ∈Q Solution approach

GIOA(X̂ ) ‖·‖∞ ‖·‖N Rn {εq | εq = εqµ(c)} Polyhedral decomposition

GIOR(X̂ ) ‖·‖∞ /|bTy| ‖·‖N Rn
{
εq
∣∣ εq = bTy (εq − 1)µ(c)

}
Three sub-problems

Corollary 3. Suppose that Ax̂q ≤ b for all q ∈ Q and let x̄ be the centroid of X̂ . Then,

GIOR(X̂ ) for the forward problem FO(c) is equivalent to GIOR({x̄}) for FOA(c).

3.3. Model discussion and comparisons

Table 1 summarizes how the three variants specialize from GIO(X̂ ) using the model hyperparam-

eters (‖·‖ ,‖·‖N ,C,E1, . . . ,EQ). In this subsection, we compare the variants against the literature.

GIOA(X̂ ) can be seen as special cases of previous inverse convex optimization models in

the literature (Bertsimas et al. 2015, Esfahani et al. 2018). There, the forward problem is

minx{f(x;u,c) | g(x;u,c)≤ 0}, where f(x;u,c) and g(x;u,c) are convex differentiable functions

and u is an instance-specific parameter given to the inverse optimizer. Thus, the data set is now

X̂ = {(x̂1, û1), . . . , (x̂Q, ûQ)}. To translate inverse convex optimization to our setting, we remove u

and define f(x;c) = cTx and g(x;c) = b−Ax and obtain a linear forward problem with a fixed

feasible set. Bertsimas et al. (2015) study inverse optimization by minimizing a first-order vari-

ational inequality (i.e., the absolute duality gap in LPs) and construct a convex inverse problem

without any normalization constraint (e.g., ‖c‖N = 1). Although normalization can be avoided if

an application-specific C is convex and excludes 0, setting f(x;u,c) = cTx with a general C = Rn

implies that (c,y, ε1, . . . , εQ) = (0,0,0, . . . ,0) is a trivially optimal solution (Chan et al. 2018). Esfa-

hani et al. (2018) also study absolute duality gap inverse linear optimization with a normalization

constraint. However, they study this in the context of a distributionally robust inverse convex

optimization problem; their formulation decomposes to a finite set of conic optimization problems

after polyhedral decomposition. On the other hand, we pursue a geometric exploration that yields

several special cases with efficient solutions (e.g., Propositions 2 and 3, as well as Corollary 1).
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We remark that the relative duality gap variant has not been studied in inverse convex opti-

mization. However, GIOR(X̂ ) is often competitive with GIOA(X̂ ) in terms of solution efficiency.

Moreover, our case study on radiation therapy treatment planning in Section 5 compares several

models and shows that GIOR(X̂ ) outperforms GIOA(X̂ ) on the downstream clinical task.

4. Measuring goodness of fit

In this section, we present a unified view of measuring model-data fitness by developing a metric

that is easily and consistently interpretable across different inverse linear optimization methods,

forward models, and applications. As shown in Example 1, Figure 2 (below), simply assessing the

aggregate error from the inverse optimization model may not provide a complete picture of model

fitness. Moreover, a context-free goodness of fit metric is useful when comparing different forward

models for a given data set, or when faced with an unfamiliar application.

There exist previously proposed fitness measures for inverse optimization, but they are less

general compared to the one developed in this section. For example, the measures were either

context-specific (e.g., Troutt et al. (2006) for production planning and Chow and Recker (2012) for

traffic assignment) or applicable only for a single feasible observed decision (Chan et al. 2018). Our

metric expands on this latter metric, referred to as the coefficient of complementarity and denoted

ρ({x̂}), which provides a scale-free, unitless measure of goodness of fit, analogous to the coefficient

of determination R2 in linear regression. It was defined as

ρ({x̂}) = 1− ‖ε∗‖∑m

i=1 ‖εi‖/m
.

The numerator of the ratio is the residual error from the estimated cost vector, equivalently the

optimal value of GIO({x̂}). The denominator is the average of the errors corresponding to the

projections of x̂ to each of the m constraints (i.e., εi = x̂− πi(x̂) for i ∈ I). Just as R2 calculates

the ratio of error of a linear regression model over a baseline mean-only model, ρ({x̂}) measures

the relative improvement in error from using FO(c∗) compared to a baseline corresponding to the

average error induced by m candidate optimal cost vectors (recall Theorem 1).

In this section, we generalize ρ({x̂}) for use with GIO(X̂ ). When it is clear, we omit the data set

from notation and denote the absolute and relative duality gap variants as ρA and ρR, respectively.
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4.1. Multi-point coefficient of complementarity

We define the (multi-point) coefficient of complementarity, ρ(X̂ ), as

ρ(X̂ ) = 1−
∑Q

q=1

∥∥ε∗q∥∥
1
m

∑m

i=1

(∑Q

q=1 ‖εq,i‖
) . (14)

The numerator is the optimal value of GIO(X̂ ), i.e., the residual error from an optimal solution

to the inverse optimization problem. The denominator terms
∑Q

q=1 ‖εq,i‖ represent the aggregate

error induced by choosing baseline feasible solutions (c,y) = (ai/‖ai‖N ,ei/‖ai‖N):

• For absolute duality gap, GIOA(X̂ ),

Q∑
q=1

‖εq,i‖=

Q∑
q=1

∣∣aT
i x̂q − bi

∣∣
‖ai‖1

. (15)

• For relative duality gap, GIOR(X̂ ), under the assumption that bi 6= 0 for all i∈ I,

Q∑
q=1

‖εq,i‖=

Q∑
q=1

∣∣∣∣aT
i x̂q
bi
− 1

∣∣∣∣ . (16)

The denominator in ρ(X̂ ) represents a baseline against which the inverse solution is measured.

Our choice of baseline is a direct extension from the single-point case, where an optimal cost

vector can be found by selecting amongst one of the vectors ai defining the m constraints. We

maintain this choice of baseline for several reasons. First, an optimal solution will be exactly one

of the ai in several special cases of the objective space problem (see Propositions 2 and 6). Second,

calculation of the denominator is straightforward either directly from the data (e.g., (15) and (16)).

Third, this definition provides a direct generalization of the single-point metric, inheriting several

attractive mathematical properties that we present in Section 4.2. In addition, for objective space

models, following the same development as Propositions 2 and 6, the multi-point coefficient of

complementarity is equal to the single-point version when all data points are feasible.

Proposition 8. Let x̄ be the centroid of X̂ ⊂ P. Then, ρA(X̂ ) = ρA({x̄}) and ρR(X̂ ) = ρR({x̄}).

4.2. Properties of ρ

Chan et al. (2018) demonstrated that ρ({x̂}) possesses several mathematical properties analogous

to the properties of R2 from linear regression. The properties also hold for the more general ρ(X̂ ).
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Theorem 3. The following properties hold for ρ defined in (14):

1. Optimality: ρ is maximized by an optimal solution to GIO(X̂ ).

2. Boundedness: ρ∈ [0,1].

3. Monotonicity: For 1≤ k < n, let GIO(k)(X̂ ) be GIO(X̂ ) with additional constraints ci = 0,

for k+ 1≤ i≤ n and let ρ(k) be the coefficient of complementarity. Then, ρ(k) ≤ ρ(k+1).

The first property underlines how ρ fits into the generalized inverse optimization framework. One

can select any cost vector and calculate the induced error and ρ value with respect to the data X̂ .

However, a solution obtained via GIO(X̂ ) is guaranteed to attain the maximum value for ρ. Like

least squares regression and R2, our inverse optimization model and this ρ metric form a unified,

mathematically rigorous framework for model fitting and evaluation in inverse optimization.

The second property makes ρ easily interpretable as a measure of goodness of fit, with higher

values indicating better fit. Note that ρ= 1 if and only if
∑Q

q=1

∥∥ε∗q∥∥= 0 (i.e., every point in X̂ is

an optimal solution to FO(c∗)). In this case, the model perfectly describes all of the data points,

analogous to the best fit line passing through all data points in a linear regression. Conversely,

ρ = 0 if and only if
∑Q

q=1

∥∥ε∗q∥∥ =
∑Q

q=1 ‖εq,i‖ for all i ∈ I. This scenario occurs when an optimal

solution to the inverse optimization problem does not reduce the model-data fit error with respect

to any of the baseline solutions, akin to when a linear regression returns an intercept-only model.

The third property states that goodness of fit is nondecreasing as additional degrees of freedom

are provided to the practitioner. This property is analogous to the property that R2 is nondecreasing

in the number of features in a linear regression model. Because of this similarity, ρ also shares one

of the weaknesses of R2, namely the potential of overfitting. Thus, when using ρ to compare the

goodness of fit of several inverse optimization models, a user should ensure that higher values of ρ

represent true improvements in fit, rather than artificial increases that lack generalizability.

4.3. Numerical examples

Next, we present two examples highlighting behavioral properties and usefulness of the coefficient

of complementarity. Example 1 illustrates the value of using ρ instead of an unnormalized measure
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Figure 2 GIOA(X̂ ) with two FO(c;u, v), same c∗ and ε∗, but different ρ. Illustration of Example 1.

(a) FO(c;−2,10). ρ= 0.76.
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(b) FO(c; 4,4). ρ= 0.34.
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of error when comparing different models. Intuitively, a given error within a larger feasible region

indicates better fit than the same error within a smaller feasible region: ρ captures this intuition

by measuring error in the context of the geometry of the feasible set of the forward model.

Example 1 Let FO(c;u, v) : min
x
{c1x1 + c2x2 | − 0.71x1 + 0.71x2 ≥ −2.83, x1 ≤ 7, x2 ≤ v, x1 ≥

u; x2 ≥ 1} and let X̂ = {(5,2.5), (4.75,3.75), (5.5,3)}. GIOA(X̂ ) in both cases yields c∗ = (−0.5,0.5)

and
∑3

q=1 |ε∗q | = 2.75. However, for FO(c;−2,10), ρ = 0.76, while for FO(c; 4,4), ρ = 0.34. In

Fig. 2a, the data points are closer to the bottom facet, relative to the other facets, while in Fig. 2b,

the data points are near the “center” of the polyhedron rather than a specific facet.

Next, we present an example that demonstrates the behaviour of ρ when the forward problem

remains the same but the data set changes. In Example 2 case (a), the points are close together

and all project to the same facet, resulting in the same optimal cost vector. In (b), the points are

further apart, each with a different preferred cost vector, but the aggregate error is minimized by

selecting a cost vector that is not preferred by any of them. In the latter case, the inverse solution

is a compromise between the preferences of the individual data points, resulting in poorer fit.

Example 2 Let FO(c) : min
x
{c1x1 + c2x2 | x1 ≤ 7, x2 ≤ 7, x1 ≥ 1, x2 ≥ 1}, X̂1 =

{(3.75,2), (4,2.25), (4.25,2)} and X̂2 = {(1.5,2), (4,6.25), (6.5,2)}. Both GIOA(X̂1) and GIOA(X̂2)
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Figure 3 GIOA(X̂1) and GIOA(X̂2) for the same FO(c). Illustration of Example 2.

(a) X̂1 = {(3.75,2), (4,2.25), (4.25,2)}. ρ= 0.64.
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(b) X̂2 = {(1.5,2), (4,6.25), (6.5,2)}. ρ= 0.17.
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impute c∗ = (0,1). In Fig. 3a, the data points are closer together and all clearly prefer the bottom

facet, while in Fig. 3b, the points are further apart, with each point biased towards a different facet.

We find ρ= 0.64 and ρ= 0.17 for the two problems, respectively.

5. Knowledge-based automated planning in radiation therapy

In this section, we implement several GIO(X̂ ) variants and demonstrate the use of ρ in the context

of intensity-modulated radiation therapy (IMRT) treatment planning in head-and-neck cancer.

IMRT, where a linear accelerator (LINAC) delivers beamlets of radiation to a tumor, is one of the

most widely-used cancer treatment techniques. A treatment is typically designed using a multi-

objective optimization model, but model parameters for a given patient (e.g., objective weights)

are not known a priori. Consequently, standard clinical practice is to iterate between treatment

planners (for design) and oncologists (for approval) via ad-hoc parameter tuning.

As an alternative to trial-and-error, knowledge-based automated planning (KBAP) has been

proposed to streamline the treatment design process (Sharpe et al. 2014). KBAP consists of two

components: (1) a prediction model that, for a given patient, predicts an appropriate dose dis-

tribution; and (2) an optimization model that generates a deliverable treatment plan that closely

replicates the predicted dose distribution. Early approaches predicted summary statistics of the

dose distribution using techniques that include look-up tables, linear regression, and principle com-

ponent analysis (Wu et al. 2009, Zhu et al. 2011, Appenzoller et al. 2012). Recent approaches
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predict the entire 3D dose distribution using random forests (McIntosh and Purdie 2016) and

neural networks (Mahmood et al. 2018, Kearney et al. 2018, Babier et al. 2018c).

There are two main approaches to the optimization component in KBAP. The first is “dose

mimicking”, which amounts to minimizing a 2-norm to determine a deliverable plan that closely

reproduces the original predicted dose (McIntosh et al. 2017). The second approach uses inverse

optimization: first estimating the parameters of a treatment (i.e., forward) optimization model

assuming that the predicted dose is the “observed decision”, and then solving the forward opti-

mization model with these parameters to generate the actual treatment plan (Lee et al. 2013, Chan

et al. 2014, Boutilier et al. 2015, Babier et al. 2018b).

To date, the prediction stage in KBAP have exclusively output a single prediction, which is then

converted into a treatment plan via optimization. However, different prediction models lead to plans

with different trade-offs between the clinical evaluation criteria. Consequently, rather than using

a single prediction in KBAP, we harness an ensemble of different predictions to generate a single

treatment plan that balances the trade-offs and improves upon the single-point models. To be clear,

instead of averaging many predictions (like in a random forest), we keep each prediction in the

ensemble separate, and use inverse optimization over all of them simultaneously. Until now, KBAP

optimization has never been used to generate a single treatment plan from multiple predictions.

Our numerical results suggest that this is a promising avenue of research. Given a set of high-

quality predictions, our inverse optimization model generates treatments that better achieve clinical

trade-offs than when given a single prediction. In particular, we first experiment over the two

different objective space models to show that the relative duality gap model is the appropriate

choice for this application. We then show that our multi-point (ensemble) approach produces

new treatment plans with better overall performance compared to traditional single-point KBAP

models. However, as our final multi-point model requires clinically-driven model engineering, we

show that ρ offers a useful domain-independent alternative when choosing models.

Using a set of different predictions from different learning models also has an intuitive clinical

interpretation. In practice, different clinicians will typically generate different treatment plans for
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the same patient. With machine learning models that produce different predictions, we imitate the

situation where clinicians have different decision-making criteria. Multi-point inverse optimization

can compromise between different predictions to construct better plans than any single-point model.

5.1. Data and methods

We use a data set of 217 clinical treatment plans for patients with oropharyngeal (a subset of head

and neck) cancer, randomly split into 130 plans for training and 87 plans for testing. With each

patient k, we associate parameters (Ck,Ak,bk) and the corresponding multi-objective linear opti-

mization problem RT–FO(αk) : minx

{
αT
kCkx

∣∣Akx≥ bk,x≥ 0
}

, where Ck is the matrix whose

rows represent different linear cost vectors and αk is the vector of objective weights. The decision

vector is composed of two subvectors, x = (w,d), where w represents the intensity of each beamlet

of radiation and d is the dose to be delivered to every voxel (4 mm × 4 mm × 2 mm volumetric

pixel) of the patient’s body, computed as a linear transformation of w. Note this multi-objective

model fits into the GIO(X̂k) framework by specifying the set of feasible cost vectors for patient k

as Ck =
{
CT
kα
∣∣α≥ 0

}
. Furthermore, the optimization problem for each patient is distinct. Given

a specific patient, the feasible set is fixed and a single treatment optimization problem is solved.

The multi-point nature arises from the multiple dose predictions comprising each patient’s data set

GIO(X̂k). Note that the use of predictions, not actual observed decisions, also constitutes an inno-

vative application of inverse optimization. We treat the predictions as functions of the decisions,

which are used to learn parameters of the underlying decision-generating process.

We first train four different 3D dose prediction models from the literature, labeled Random Forest

(RF), 2-D RGB GAN, 2-D GANCER, and 3-D GANCER (Babier et al. 2018b,c, Mahmood et al.

2018). For each model, we also implement versions with scaled predictions (suffixed with ‘-sc.’),

which are known to produce plans that better satisfy target (tumor) criteria (Babier et al. 2018c).

Thus, we have eight predictions per patient, which vary in their dose trade-offs between the targets

and healthy organs. We predict the dose d̂k,q for each test patient k ∈ {1, . . . ,87} with prediction

model q ∈ {1, . . . ,8} and let X̂k =
{

d̂k,1, . . . , d̂k,8

}
be data for each patient-specific problem.
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For each patient k in the test set, we implement absolute and relative duality gap models,

referred to as RT–IOA(X̂k) and RT–IOR(X̂k), respectively. They are derived from GIOA(X̂k) and

GIOR(X̂k) by setting Ck as defined above along with the template hyperparameters of Proposition 1

and Proposition 4, respectively. Once an objective weight vector α∗k is imputed from one of the

inverse models, we solve RT–FO(α∗k) to determine the beamlets w∗k and dose d∗k. The dose d∗k is

then evaluated using different clinical criteria. Detailed descriptions of the prediction models and

the formulation of the inverse optimization models are provided in Appendix A.

5.2. The value of multi-point inverse optimization

In practice, a suite of quantitative metrics are evaluated to assess whether sufficient dose is delivered

to the tumor and the surrounding healthy tissue is sufficiently spared. In line with clinical practice,

we use 10 binary criteria for plan evaluation (see the first two columns of Table 2; also Babier

et al. (2018a)). These criteria cover seven organs-at-risk (OARs) and three planning target volumes

(PTVs). OARs are healthy structures whose dose should remain below a specific threshold (e.g.,

the maximum dose delivered to any voxel in the brainstem should be less than 54 Gy). The PTVs

are regions that encompass the tumor sites, each of which is assigned a criterion specifying the

minimum dose that at least 99% of its volume should receive. For every criteria, we evaluate whether

the generated plan satisfied the clinical trade-off (i.e., if the ground truth clinical plan satisfied a

criteria, whether the generated plan also satisfy it.) We say that a generated plan replicated the

clinical practice if the generated plan satisfied all of the same criteria as the clinical plan.

The columns of Table 2 list the proportion of plans generated by RT–IOA(X̂ ) and RT–IOR(X̂ )

that satisfied clinical trade-offs. The ‘All’ row reflects the percentage of plans that perfectly repli-

cated all of the trade-offs as the clinical practice. We first use all eight predictions to solve

RT–IOA(X̂ ) (column 3) and RT–IOR(X̂ ) (column 4). RT–IOR(X̂ ) substantially outperforms the

RT–IOA(X̂ ) over every criterion, suggesting that the absolute duality gap model is not well-suited

to this specific application. This result is consistent with results observed for single-point inverse

optimization in IMRT (Chan et al. 2014, 2018, Goli et al. 2018) and we conjecture that it is due
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Table 2 The percentage of final plans of each KBAP population that satisfy the same clinical criteria as the

corresponding clinical plans. OARs are assigned a mean or maximum dose criteria depending on relevance. PTVs

are assigned criteria to the 99%-ile.

Structure Criteria (Gy) RT–IOA(X̂ ) RT–IOR(X̂ )

8 Pts. 8 Pts. 6 Pts. 4 Pts. 2 Pts.

Brainstem Max ≤ 54 100 100 100 100 100

Spinal Cord Max ≤ 48 100 100 98.9 98.9 100

Right Parotid Mean ≤ 26 58.8 88.2 88.2 82.4 94.1

Left Parotid Mean ≤ 26 63.6 81.8 81.8 81.8 81.8

Larynx Mean ≤ 45 59.2 95.9 95.9 93.9 95.9

Mandible Mean ≤ 45 74.4 100 100 100 100

Esophagus Max ≤ 73.5 51.5 100 98.5 95.5 97.0

PTV70 99%-ile ≥ 66.5 51.7 91.4 94.8 96.6 86.2

PTV63 99%-ile ≥ 59.9 50.0 98.0 98.0 98.0 98.0

PTV56 99%-ile ≥ 53.2 30.4 45.7 80.4 100 69.6

All 26.4 60.9 75.9 83.9 70.1

to the wide range of objective function magnitudes in the forward problem. The absolute dual-

ity gap model adjusts each objective value by the same absolute amount, causing relatively large

adjustments to objectives with low values and relatively small adjustments to objectives with high

values; thus, it has a hard time balancing different clinical criteria.

Although RT–IOR(X̂ ) with all eight predictions is generally effective at satisfying the OAR cri-

teria, these plans sacrifice the PTV criteria, especially PTV56. We hypothesize that this is due to

the large variability in the quality of predictions. For example, the 2-D RGB GAN, 2-D GANCER,

and 3-D GANCER models are known to produce plans that emphasize OAR criteria at the expense

of the PTV. Criteria satisfaction for single-point RT–IOR({x̂}) using each of the individual predic-

tions is shown in Table 3. Depending on which prediction to use, the single-point KBAP population
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varies from 10.9% to 80.5% in terms of satisfying the PTV56 criteria. When evaluating on whether

they can replicate all of the clinical criteria, this variance lies between 44.8% to 80.5%, suggesting

that some KBAP models are definitively making poorer trade-offs than others. More importantly,

each prediction has different imputed cost vectors, which as discussed in Section 4, may lead to

poor model fitness if the points are used together in multi-point RT–IOR(X̂k).

We next vary the set of predictions given to the multi-point inverse optimization model and

examine how performance changes. Using the ’All’ criteria and previous work (see Mahmood et al.

(2018), Babier et al. (2018c)), we rank the eight predictions from worst to best as follows: 3-

D GANCER, 2-D RGB GAN, 2-D GANCER, 2-D RGB GAN-sc., RF-sc., RF, 2-D GANCER-

sc., 3-D GANCER-sc. Note that we rank RF-sc. above 2-D RGB GAN-sc.; this is to prevent

over-emphasizing GAN-based models in the top predictions. Using our ranking, we implement

RT–IOR(X̂ ), but with data sets of decreasing size; we sequentially remove the two worst predictions

and re-solve RT–IOR(X̂ ). The results using the best six, four, and two predictions are provided in

columns 5–7 of Table 2. By removing the worst two predictions, the 6 Pts. model markedly improves

on PTV criteria, while satisfying almost all OAR criteria at the same rate as the original model.

This alone results in an additional 15% of the final plans being able to replicate clinical trade-offs.

Similarly, the 4 Pts. model improves over the 6 Pts. model, by achieving near perfect PTV criteria

satisfaction while mostly preserving OAR performance. In fact, this model now outperforms the

best single-point model, 3-D GANCER-sc. (see cf. Table 3). Interestingly, performance does not

continue to improve in the 2 Pts. model. This model uses two predictions (2-D GANCER-sc. and 3-

D GANCER-sc.) that individually achieve high PTV satisfaction, but fail to do so when combined

in the multi-point model. We conjecture that the 2 Pts. model reaches a local minimum in criteria

satisfaction because the two predictions lie in different regions of the feasible set.

Overall, we demonstrate that the multi-point model creates significant value as a conduit for

turning an ensemble of predictions into a single treatment plan. An interesting second point is that

the data must be carefully chosen to truly maximize performance in KBAP.
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24Table 3 The percentage of single-point inverse optimization plans of each KBAP population that satisfy the same clinical criteria as the clinical plans.

Structure Criteria (Gy) RT–IOR({x̂q})

3-D GANCER 2-D RGB GAN 2-D GANCER 2-D RGB GAN-sc. RF-sc. RF 2-D GANCER-sc. 3-D GANCER-sc.

Brainstem Max ≤ 54 100 100 100 100 98.9 100 100 100

Spinal Cord Max ≤ 48 100 98.9 100 98.9 98.9 100 98.9 98.9

Right Parotid Mean ≤ 26 94.1 94.1 82.4 88.2 94.1 88.2 88.2 94.1

Left Parotid Mean ≤ 26 100 90.9 81.8 63.6 72.8 63.6 81.8 81.8

Larynx Mean ≤ 45 98.0 89.8 89.8 87.8 95.9 91.8 85.7 93.9

Mandible Mean ≤ 45 100 100 100 100 98.7 100 100 100

Esophagus Max ≤ 73.5 100 100 100 98.5 100 100 89.4 84.8

PTV70 99%-ile ≥ 66.5 81.0 36.2 81.0 69.0 63.8 91.4 98.3 100

PTV63 99%-ile ≥ 59.9 92.0 100 100 100 98.0 98.0 100 100

PTV56 99%-ile ≥ 53.2 10.9 58.7 19.6 82.6 47.8 65.2 95.7 95.7

All 44.8 47.1 47.1 59.8 55.2 67.8 77.0 80.5

Table 4 ρ and criteria satisfaction for the best, average, and worst subsets of 6, 4, and 2 Pts. Highest performing models are bolded.

(a) ρ.

Best Average Worst

6 Pts. 0.666 0.626 0.637

4 Pts. 0.734 0.672 0.555

2 Pts. 0.851 0.664 0.631

(b) All structures criteria satisfaction (%).

Best Average Worst

6 Pts. 74.9 57.5 51.7

4 Pts. 83.9 62.1 30.1

2 Pts. 70.1 60.9 42.5
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5.3. Using ρ to validate the best subset of the data

Given a ranking of the eight predictions over their performance in a single-point KBAP pipeline

we showed in the previous subsection how reducing the data set to include only the four best

predictions resulted in treatment plans that on average achieved better trade-offs than the best

single-point model (i.e., RT–IOR({x̂}) using only 3-D GANCER-sc. predictions). When the data

contains points from different regions of the feasible set, an inverse optimization model is unable

to determine a good cost vector to describe all points. However, the coefficient of complementarity

can determine model fitness in terms of the points (e.g., see Example 2). Here, we demonstrate a

clinical analogue by validating the data selection in the Best 6 Pts., 4 Pts., and 2 Pts. models.

We consider three different variants for each of the 6 Pts., 4 Pts., and 2 Pts. models by selecting

the best, average, and worst subsets, according to the pre-defined ranking. Note that we are not

studying the effect of data set size, but rather the effect of data set quality. Table 4a compares ρ

across models with varying quality of input predictions. For a fixed data set size (i.e., along the

rows), the Best model always yields the highest ρ, which suggests that the Best predictions are

the best fit for the clinical forward model. The high ρ values correlate with the predictions that

perform best in isolation (i.e., the single-point scenario). Furthermore in Table 4b, we show that

the clinical criteria satisfaction rates for each of the models also reflect the same trends as ρ. Since

ρ is a general metric, we can evaluate the model quality for a set number of points without domain

specific knowledge, and come to the same conclusion as we do using the clinical criteria, which are

domain-specific evaluation metrics. An interesting result is that the data set with the best fit (2

Pts.) is not necessarily the one that results in the best final treatment plan (4 Pts.). This result is

due to the fact that some predictions may be overly optimistic, which is tempered after conversion

to a treatment in the optimization step of KBAP. Overall, these experiments demonstrate that in

the absence of domain-specific knowledge, practitioners can use ρ to evaluate model-data fit.

6. Conclusion

Inverse linear optimization is an increasingly popular model-fitting paradigm for estimating the

cost vector of an optimization problem when given observed decisions. Motivated by ensemble
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methods in machine learning, we develop a framework that uses a collection of decisions for a single,

fixed problem to estimate a consensus cost vector. Here, the data can be noisy observations or, as

in our application, a family of machine learning-generated predictions of an optimal solution. We

propose a generalized inverse linear optimization framework that unifies several common variants

of inverse optimization from the literature and derive assumption-free exact solution methods for

each. To complete our framework, we develop a general goodness of fit metric to measure model-

data fit in any inverse linear optimization application. We demonstrate that this metric, by virtue

of possessing properties analogous to R2 in linear regression, is easy to calculate and interpret.

We propose a novel application of multi-point inverse optimization in the automated construction

of radiation therapy treatment plans. In contrast to the current state-of-the-art, which generates

treatment plans from individual dose predictions, we use a family of different dose predictions,

each with different characteristics, to form superior treatment plans with better clinical trade-offs.

Finally, while constructing the best inverse optimization model requires careful clinical expertise,

we show how our goodness-of-fit metric can provide domain-independent validation of our model

engineering process. Beyond the specific application presented in this paper, we believe there will be

new applications of predict-then-inversely optimize frameworks that can build on our foundation.

References

Appenzoller LM, Michalski JM, Thorstad WL, Mutic S, Moore KL (2012) Predicting dose-volume histograms

for organs-at-risk in imrt planning. Medical physics 39(12):7446–7461.

Babier A, Boutilier JJ, McNiven AL, Chan TCY (2018a) Knowledge-based automated planning for oropha-

ryngeal cancer. Med Phys 45:2875–2883.

Babier A, Boutilier JJ, Sharpe MB, McNiven AL, Chan TCY (2018b) Inverse optimization of objec-

tive function weights for treatment planning using clinical dose-volume histograms. Phys Med Biol

63(10):105004.

Babier A, Mahmood R, McNiven AL, Diamant A, Chan TCY (2018c) Knowledge-based automated planning

with three-dimensional generative adversarial networks. arXiv preprint arXiv:1812.09309 .



A. Babier et al.: Model Fitting in Generalized Inverse Linear Optimization: Applications in Radiation Therapy
27

Bertsimas D, Gupta V, Paschalidis IC (2015) Data-driven Estimation In Equilibrium Using Inverse Opti-

mization. Mathematical Programming 153(2):595–633.

Boutilier JJ, Lee T, Craig T, Sharpe MB, Chan TCY (2015) Models for predicting objective function weights

in prostate cancer imrt. Medical Physics 42(4):1586–1595.

Breiman L (2001) Random forests. Machine Learning 45(1):5–32.

Chan TCY, Craig T, Lee T, Sharpe MB (2014) Generalized Inverse Multiobjective Optimization with Appli-

cation to Cancer Therapy. Operations Research 62(3):680–695.

Chan TCY, Lee T, Terekhov D (2018) Inverse optimization: Closed-form solutions, geometry, and goodness

of fit. Management Science .

Chow JYJ, Recker WW (2012) Inverse optimization with endogenous arrival time constraints to calibrate the

household activity pattern problem. Transportation Research Part B: Methodological 46(3):463–479.

Craft D, Suss P, Bortfeld T (2007) The tradeoff between treatment plan quality and required number

of monitor units in intensity-modulated radiotherapy. International Journal of Radiation Oncology,

Biology, Physics 67:1596–1605.

Esfahani PM, Shafieezadeh-Abadeh S, Hanasusanto GA, Kuhn D (2018) Data-driven inverse optimization

with imperfect information. Mathematical Programming 167(1):191–234.

Goli A (2015) Sensitivity and Stability Analysis for Inverse Optimization with Applications in Intensity-

Modulated Radiation Therapy. Master’s thesis, University of Toronto.

Goli A, Boutilier JJ, Craig T, Sharpe MB, Chan TCY (2018) A small number of objective function weight

vectors is sufficient for automated treatment planning in prostate cancer. Phys Med Biol 63(19):195004.

Kearney V, Chan JW, Haaf S, Descovich M, Solberg TD (2018) Dosenet: a volumetric dose prediction

algorithm using 3d fully-convolutional neural networks. Phys Med Biol 63(23):235022.

Lee T, Hammad M, Chan TCY, Craig T, Sharpe MB (2013) Predicting objective function weights from

patient anatomy in prostate imrt treatment planning. Medical Physics 40(12):121706.

Mahmood R, Babier A, McNiven A, Diamant A, Chan TCY (2018) Automated treatment planning in

radiation therapy using generative adversarial networks. Proceedings of the 3rd Machine Learning for

Healthcare Conference, volume 85 of Proceedings of Machine Learning Research, 484–499 (PMLR).



A. Babier et al.: Model Fitting in Generalized Inverse Linear Optimization: Applications in Radiation Therapy
28

Mangasarian OL (1999) Arbitrary-norm separating plane. Operations Research Letters 24(1):15–23.

McIntosh C, Purdie TG (2016) Voxel-based dose prediction with multi-patient atlas selection for automated

radiotherapy treatment planning. Physics in Medicine & Biology 62(2):415.

McIntosh C, Welch M, McNiven A, Jaffray DA, Purdie TG (2017) Fully automated treatment planning for

head and neck radiotherapy using a voxel-based dose prediction and dose mimicking method. Physics

in Medicine & Biology 62(15):5926.

Saez-Gallego J, Morales JM (2017) Short-term forecasting of price-responsive loads using inverse optimiza-

tion. IEEE Transactions on Smart Grid PP(99):1–1, ISSN 1949-3053.

Sharpe MB, Moore KL, Orton CG (2014) Within the next ten years treatment planning will become fully

automated without the need for human intervention. Medical physics 41(12).

Troutt MD (1995) A maximum decisional efficiency estimation principle. Management Science 41(1):76–82.

Troutt MD, Pang WK, Hou SH (2006) Behavioral estimation of mathematical programming objective func-

tion coefficients. Management Science 53(3):422–434.

Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M, Taylor R, Jacques R, McNutt T (2009)

Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys

36(12):5497–505.
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Appendix A: Knowledge based treatment planning in radiation therapy

IMRT treatment is delivered by a linear accelerator (LINAC) that delivers high-energy X-rays from different

angles to a patient’s tumor. The patient’s body is discretized into tiny voxels in order to calculate the dose

delivered to each voxel. The optimization problem for designing an IMRT treatment plan is over x = (w,d),

composed of the beamlets and the dose delivered (in Gy) from the intensities of the beamlets, respectively.

The forward model in our experiments is a modified version of the one used by Babier et al. (2018b). Let

B be the index set of beamlets and wb be the radiation intensity of beamlet b ∈ B. Similarly, let V be the
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index set of voxels in a patient and dv be the dose of radiation delivered to voxel v ∈ V. Dose is calculated

linearly, i.e., dv =
∑

b∈BDv,bwb, where Dv,b is the dose influence of beamlet b on voxel v.

For each patient, let T denote the index set of the three planning target volumes (PTVs) with different

prescription doses (i.e., PTV56, PTV63, and PTV70 with 56 Gy, 63 Gy, and 70Gy as prescription doses,

respectively) and let O denote the index set of the eight surrounding OARs (i.e., brain stem, spinal cord,

right parotid, left parotid, larynx, esophagus, mandible, and limPostNeck). Note that the limPostNeck is an

artificially defined region used solely in optimization; it does not possess a clinical criteria. For each t ∈ T

and o∈O, let Vt and Vo denote the set of voxels corresponding to the given target or OARs, respectively.

A.1. Forward objectives

The IMRT forward problem includes 65 different objectives each minimizing some feature of the dose delivered

to an OAR or PTV. For each OAR, we minimize the mean dose delivered, the maximum dose delivered, and

the average dose above a threshold φθo. Here, φθo is a fraction θ of the average maximum dose to OAR o over

the data set; we consider θ ∈Θ := {0.25,0.5,0.75,0.9,0.975}. These objectives are computed as follows:

zmean
o =

1

|Vo|
∑
v∈Vo

dv, ∀o∈O (17)

zmax
o = max

v∈Vo
{dv} , ∀o∈O (18)

zthresh,θ
o =

1

|Vo|
∑
v∈Vo

max
{

0, dv −φθo
}
, ∀θ ∈Θ,∀o∈O. (19)

Each PTV is assigned a prescribed dose φt, i.e., 56 Gy for PTV56, 63 Gy for PTV63, and 70 Gy for PTV70.

For each PTV, we minimize the dose over the prescription, under the prescription, and the maximum dose

delivered to the target, which can be computed as follows:

zover
t =

1

|Vt|
∑
v∈Vt

max{0, dv −φt} , ∀t∈ T (20)

zunder
t =

1

|Vt|
∑
v∈Vt

max{0, φt− dv} , ∀t∈ T (21)

zmax
t = max

v∈Vt
{dv} , ∀t∈ T . (22)

A.2. Forward constraints

In order to ensure that no OAR or PTV is prioritized by the objectives at a cost to the other organs, we

assign a set of hard constraints for each structure. OARs are assigned constraints ensuring the mean and

maximum doses do not exceed safety limits, whereas PTVs are constrained to ensure they receive baselines.

Brain stem: zmean
o ≤ 30, zmax

o ≤ 53 (23)
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Spinal cord: zmean
o ≤ 30, zmax

o ≤ 46 (24)

Left parotid: zmean
o ≤ 68, zmax

o ≤ 77 (25)

Right parotid: zmean
o ≤ 68, zmax

o ≤ 78 (26)

Larynx: zmean
o ≤ 68, zmax

o ≤ 77 (27)

Esophagus: zmean
o ≤ 52, zmax

o ≤ 75 (28)

Mandible: zmean
o ≤ 63, zmax

o ≤ 76 (29)

limPostNeck: zmean
o ≤ 21, zmax

o ≤ 46 (30)

PTV56: zmean
t ≥ 58 (31)

PTV63: zmean
t ≥ 63 (32)

PTV70: zmean
t ≥ 69 (33)

Note that we introduce a zmean
t variable for the targets, analogous to zmean

o in (17).

Finally, we include a constraint on the physical deliverability of the treatment plan. This constraint, known

as the sum-of-positive-gradients (SPG), restricts the variation of doses from neighboring beamlets so that

the resulting dose shape is deliverable (Craft et al. 2007). Let a∈A index each angle of the LINAC, r ∈Ra

index each row of the LINAC at that angle, and Br index beamlets along that row. We add the constraint

∑
a∈A

max
r∈Ra

{∑
b∈Br

max{0,wb−wb+1}

}
≤ 55, (34)

where wb+1 = 0 for the last beamlet in a row. The right-hand-side is 55 Gy as in Babier et al. (2018c).

A.3. Forward optimization problem

The final forward problem is then to minimize a weighted combination of the objectives:

RT–FO(α) : minimize
z,w,d

∑
o∈O

(
αmean
o zmean

o +αmax
o zmax

o +
∑
θ∈Θ

αthresh,θ
o zthresh,θ

o

)
+

∑
t∈T

(
αover
t zover

t +αunder
t zunder

t +αmax
t zmax

t

)
subject to (17)− (34)∑

b∈B

Dv,bwb = dv, ∀v ∈ V

wb, dv ≥ 0, ∀b∈B,∀v ∈ V.

(35)
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We compress the notation of the above forward problem to FO(α) : minx

{
αTCx

∣∣Ax≥ b,x≥ 0
}

. This

problem has several useful properties. Firstly under this notation, the matrix of objective functions C is non-

negative. Furthermore, the constraint vector b is also non-negative. These properties are useful specifically as

they allow for constructing almost entirely linear inverse optimization problems (see Section A.5 for details).

A.4. Generating a data set of predicted treatments

We use the training set of 130 patients to implement a series of machine learning models that were previously

proposed in the KBAP literature. Each machine learning model takes as input a segmented CT image of the

patients tumour site and predicts the dose distribution d̂. We briefly describe the models below:

1. Random Forest: A random forest that predicts the dose to be delivered to each voxel of the dose

distribution d̂v individually (Mahmood et al. 2018)

2. 2-D RGB GAN: A generative adversarial network (GAN) that predicts an RGB image representation

of each axial slice of the dose distribution individually (Mahmood et al. 2018)

3. 2-D GANCER: A GAN that predicts the dose distribution of each axial slice (Babier et al. 2018c).

4. 3-D GANCER: A GAN that predicts the dose distribution vector d̂ in one shot (Babier et al. 2018c).

Babier et al. (2018c) noted that plans predicted using the above models often delivered low dose (i.e., sig-

nificantly spare healthy tissue) at the cost of failing prescription criteria for the PTVs, and implemented

a rescaling method to create an improved prediction. They showed that treatment plans constructed using

inverse optimization-based KBAP and the scaled dose would better satisfy prescription criteria while per-

forming poorer on sparing healthy tissue. We implement the rescaling method on all predictions from the

models, and use both the non-scaled and scaled predictions as input for the inverse optimization model.

Thus, for each patient there is a data set of 8 dose distributions, i.e., X̂ = {ẑ1, . . . , ẑ8}. Note that we do not

require x̂q = (ŵq, d̂q). Inverse optimization yields a weight vector αk, with which we then re-solve FO(αk).

A.5. Inverse optimization problems

In order to frame FO(α) for generalized inverse optimization, we restrict imputed cost vectors to be in

the image of C, i.e., C =
{
CTα

∣∣α≥ 0
}

. Note that α ≥ 0 is an application-specific constraint.A specific

inverse optimization problem is then formulated by appropriately selecting the model hyperparameters

(‖·‖ ,‖·‖
N
,C,E1, . . . ,EQ) from GIO(X̂ ). We use the default parameters, except with the custom C to ensure

the objective function is a weighted combination of the different objectives. We set ‖·‖
N

= ‖·‖1.
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A.5.1. Absolute duality gap Using Proposition 1 and our choice of C, we formulate the following:

RT–IOA(X̂ ) : min
α,y,ε1,...,εQ

Q∑
q=1

|εq|

s. t. CTα≥ATy, y≥ 0

αTẑq = bTy + εq, ∀q ∈Q

(CTα)T1 = 1

α≥ 0.

(36)

RT–IOA(X̂ ) is obtained by substituting c = CTα and noting
∥∥CTα

∥∥
1

=αTC1 when α≥ 0 and C≥ 0.

A.5.2. Relative duality gap Using Proposition 4 and our specific choice of C, we formulate a relative

duality gap inverse optimization problem, for which we then form an LP relaxation.

RT–IOR(X̂ ) :

min
α,y,ε1,...,εQ

Q∑
q=1

|εq − 1|

s. t. CTα≥ATy, y≥ 0

αTẑq = εqb
Ty, ∀q ∈Q

(CTα)T1 = 1

α≥ 0.

(37)

RT–IOR,LP(X̂ ) :

min
α,y,ε1,...,εQ

Q∑
q=1

|εq − 1|

s. t. CTα≥ATy, y≥ 0

αTẑq = εq, ∀q ∈Q

bTy = 1

α≥ 0.

(38)

We first solve the LP relaxation of RT–IOR(X̂ ), stated above as RT–IOR,LP(X̂ ). Note that this relaxation

is application-specific analogue of relaxing GIO+
R(X̂ ), which is only one of the three reformulations of the

relative duality gap problem. Note that the analogue to GIO−R(X̂ ) is infeasible; in our application, b ≥ 0

implying bTy≥ 0 for all y≥ 0. Similarly, the application-specific analogue of GIO0
R(X̂ ) in practice is often

infeasible or generates plans that perform poorly on the clinical criteria satisfaction metrics compared to

RT–IOR,LP(X̂ ). Recall that GIO0
R(X̂ ) requires cTx̂q = 0 for all q ∈Q. In the application-specific analogue

(where the constraint is αTẑq = 0), both α≥ 0 and ẑq ≥ 0, which means that the problem is feasible only

when there exists an element of ẑq that is equal to 0 for all of the predictions. This situation could only occur

for the threshold objectives (19)–(21). In our case, GIO0
R(X̂ ) is infeasible for every patient in the data set.


