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We consider a data-driven framework for learning to generate decisions to instances of continuous optimiza-

tion problems where the feasible set varies with an instance-specific auxiliary input. We use a data set of

inputs and feasible solutions, as well as an oracle of feasibility, to iteratively train two machine learning

models. The first model is a binary classifier for feasibility, which then serves as a barrier function to train the

second model via an interior point method. We develop theory and optimality guarantees for interior point

methods when given a barrier that relaxes the feasible set, and extend these results to obtain probabilis-

tic out-of-sample guarantees for our learning framework. Finally, we implement our method on a radiation

therapy treatment planning problem to predict personalized treatments for head-and-neck cancer patients.

1. Introduction

Consider a decision-maker who regularly solves different instances of a continuous optimization

problem. There is a fixed objective and a common set of constraints over all instances. However,

each instance also includes some exogenous input that may change the feasible set in a way that

cannot be easily characterized. This input is not a parameter, but rather, auxiliary data that maps

to latent constraints that may not have a convenient or formal mathematical representation.

While conventional optimization methods can produce optimal solutions for the common prob-

lem (i.e., the fixed objective and common constraints), these approaches make limited use of the

auxiliary data because the latent constraints cannot be described conventionally. For example, a

decision-maker may only be able to determine feasibility for any candidate decision via an oracle.

The common optimization problem is a relaxation of the instance-specific formulation and if the

latent constraints are not considered, the solution to the common problem may not be feasible for

the problem instance. In practice, this approach still provides a starting point for the decision-

maker: she can manually modify the output and obtain an instance-specific solution. However,

these post-hoc refinements suggest that the final solutions may not be provably optimal decisions.

Systematic approaches may attempt to predict the effect of the auxiliary data on the optimization

model. Since these techniques are data-driven, they rely on the collection of past inputs and

1



Babier et al.: Learning to optimize with hidden constraints
2

decisions as well as a prediction model to characterize the latent behavior. In operations research,

this has been studied in the context of the auxiliary data affecting the objective. For example, local

regression and neighbor or tree-based models can be placed in a conditional stochastic objective so

as to penalize decisions predicted to be of poor quality (Bertsimas and Kallus 2019). An alternative

is to recast the common problem as a parameterized one and use machine learning to predict the

instance-specific parameters from the auxiliary input (Angalakudati et al. 2014, Ferreira et al. 2015,

Babier et al. 2018a, Liu et al. 2018). This can be implemented by first predicting the quantities of

interest and then optimizing over them or by embedding the machine learning model directly into

the optimization problem and solving both simultaneously (Elmachtoub and Grigas 2017, Ban and

Rudin 2018). Regardless of the approach, these techniques assume that the feasible region can be

described mathematically and thus, the problem reduces to learning an objective function.

Since the common problem is well-specified and both past inputs and implemented decisions

exist, it should be possible to learn a representation of the latent constraints in order to directly

predict the instance-specific optimal decisions (Larsen et al. 2018). While the notion of using deep

learning to predict optimal solutions to an optimization problem has been studied before (Hopfield

and Tank 1985, Bengio et al. 2018), there are no results that guarantee the optimality of the

predicted solutions for a general input. Thus, in this paper, we consider a framework for learning to

generate optimal decisions to a continuous constrained optimization problem with a fixed objective

and a feasible region characterized by the latent constraints of the decision-maker. By combining

techniques from deep learning and operations research, we capture the best of both worlds: learning

unstructured mappings between inputs and decisions while also proving mathematical guarantees

on solution quality and generalization to out-of-sample problem instances.

1.1. Motivating application

Our work is motivated by the problem of automatically generating personalized radiation therapy

(RT) treatment plans for patients diagnosed with cancer. RT is one of the primary methods for

cancer treatment and is recommended for over 50% of all diagnoses (Delaney et al. 2005). In RT,

a linear accelerator delivers beamlets of radiation from different angles to a tumor. To construct

a treatment plan, a dosimetrist solves an optimization problem to sufficiently dose the tumor

while minimizing damage to the healthy tissue. Before delivery, the plan must be approved by

an oncologist based on its performance across several institutionally mandated criteria. Since it

is impossible to simultaneously satisfy all criteria (e.g., tumor dose may be sacrificed to reduce

dose to nearby critical structures or vice versa), oncologists make subjective trade-offs y choosing

a subset of relevant criteria for a given patient based on prior expertise. These oncologist-driven

trade-offs are effectively latent constraints that are parameterized by the patient’s information and

can be learned from examining past decisions (i.e., treatment plans) approved by the oncologist.
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The current clinical practice is an iterative and time-consuming process where the dosimetrist

and oncologist work together to generate acceptable treatment plans. The dosimetrist tunes the

parameters of a surrogate multi-objective optimization problem and solves it to generate a can-

didate treatment. The oncologist is a membership oracle who determines whether a solution is

satisfactory, and if not, suggests areas to improve. The dosimetrist then re-parametrizes the opti-

mization problem and generates a new solution. Multiple iterations are typically required and it

can take several days to generate a single treatment plan, especially for complex cases. With rising

demand for RT treatment, particularly in developing countries, these individual delays can lead to

a significant increase in wait times, which motivates automated approaches (Atun et al. 2015).

By analyzing past inputs and deliverable treatments, the oncologist’s experience in determin-

ing satisfactory plans can be automated using predictive modeling. Several recent papers have

demonstrated that automated treatment plan generation using machine learning techniques in

conjunction with optimization is a viable alternative to the manual process (e.g., Wu et al. 2017,

McIntosh and Purdie 2017, Babier et al. 2018a). This area is broadly known as knowledge-based

planning (KBP). First, a machine learning model trained on previously delivered plans predicts

an acceptable dose distribution (Shiraishi et al. 2015, McIntosh et al. 2017, Mahmood et al. 2018,

Babier et al. 2019). The prediction is used as input into an optimization model that generates a

treatment plan (i.e., the set of beamlets) that yields a similar dose distribution to the prediction.

Conventional prediction models are trained to generate dose distributions by minimizing some

error with respect to a set of clinical plans rather than incorporating characteristics of the optimiza-

tion problem. However, these approaches have two main drawbacks. First, predicted doses are not

guaranteed to be feasible with respect to the latent oncologist constraints or even satisfy any opti-

mality certificates. This may lead to delays in treatment delivery as the dosimetrist and oncologist

may need additional iterations to manually correct the plans. Second, the protocols for radiation

therapy treatment often vary between institutions (e.g., Geretschläger et al. 2015 versus Babier

et al. 2018b). This makes it difficult to deploy the same automated planning pipeline at multiple

institutions because off-the-shelf prediction models trained using data from one clinic may not sat-

isfy protocols (e.g., hidden constraints) at other institutions (Wu et al. 2017). A clinic attempting

to implement an automated planning pipeline would first need to train a custom prediction model

using institution-specific data, which is especially difficult for smaller clinics or those ramping up

in developing countries. Thus, it is essential to design dose prediction and automated treatment

planning models that can deliver plans that are certifiably safe, as measured by feasibility and

optimality guarantees, as well as adaptable to new settings.
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1.2. Contribution

Our general approach involves transforming the “true” optimization problem (i.e., the model with

the latent feasible set) into a prediction problem solved via two machine learning models. First, a

binary classifier learns the feasible set for different instances. Then, a generative model navigates the

instance-specific feasible region characterized by the support of the classifier to return an optimal

solution. The two models are trained sequentially over several iterations; after each iteration, an

oracle of feasibility labels the current predictions of the generative model as feasible or infeasible.

The newly labelled data then helps train the classifier in the following iteration.

In our training algorithm, the generative model navigates the support of the classifier via an

interior point method (IPM). However, IPMs are effective primarily when the feasible set is fully

known. As we simultaneously learn feasibility along with optimality, our classifier does not enjoy the

conventional properties of a canonical barrier function employed in IPMs. Therefore, we introduce

the notion of a weak barrier function—one that may not perfectly discriminate feasibility. We

derive a new ε-optimality guarantee for optimization when given only a weak barrier function.

We then show that our generative model, which now predicts solutions rather than optimizing for

them, enjoys similar guarantees both for in-sample testing and out-of-sample problem instances.

Our technical contributions are as follows:

1. We introduce the concept of a δ-barrier, which is a barrier function for a relaxation of a feasible

set. We characterize the (δ, ε)-optimality guarantee for solutions that are generated using a

δ-barrier, generalizing key results of IPMs to the setting of a partially specified feasible set.

2. We present Interior Point Methods with Adversarial Networks (IPMAN), an iterative, oracle-

guided algorithm for learning to generate optimal solutions when given instance information

to problems with latent constraints. The classifier trained in this algorithm approximates a

δ-barrier, the generative model generates (δ, ε)-optimal solutions on training instances, and

the oracle-guided data augmentation guarantees that the classifier improves in every iteration.

3. We prove a generalization bound on the (δ, ε)-optimality gap of any model that predicts

solutions to a random problem instance. This bound holds for IPMAN, meaning that both

in-sample and out-of-sample error from the optimal value can be evaluated.

We apply IPMAN to predict the dose distribution to be delivered to head-and-neck cancer

patients. In this context, we model the clinical criteria that must be met before a treatment is

accepted as latent constraints to be learned from historically delivered treatment plans. After the

classifier is trained, the generative model produces dose distributions that the classifier predicts

will satisfy the relevant clinical criteria for that patient. The oracle labels the generated output as

correct if the plan satisfied all of the hidden constraints that the oncologist had determined were

relevant for the patient. By incorporating the evaluation of feasibility and optimality in training, our



Babier et al.: Learning to optimize with hidden constraints
5

approach extends state-of-the-art generative adversarial network (GAN) frameworks for predicting

dose distributions. Our final product is a generative model that outputs dose distributions that are

guaranteed to be within a neighborhood of optimality (both in- and out-of-sample).

In our numerical experiments, we find that the doses predicted by our model better resemble

clinical doses than current state-of-the-art baselines. We then show that once the latent constraints

are learned, they can be altered using IPMAN so that dose distributions can be predicted for

institutions with different protocols, without collecting a new institution-specific data set. This

result has implications for the transfer of automated treatment planning technology between insti-

tutions (Wu et al. 2017), as well as closing the global gap in supply of radiation therapy by enabling

all clinics to perform automated planning (Atun et al. 2015).

2. Background and related work

This paper brings together ideas from several fields. First, the concept of using two learning mod-

els, one to evaluate and one to generate solutions, is a standard approach in reinforcement learning

(e.g., actor-critic methods (Konda and Tsitsiklis 2000)), and deep learning (e.g., generative adver-

sarial networks (Goodfellow et al. 2014)). The specific practice of training a machine learning model

using an oracle is known as imitation learning (Bain and Sammut 1999). Further, our loss function

and optimality guarantees are derived using the theory of interior point methods (Nesterov and

Nemirovskii 1994), while our learning guarantees extend recent results on Rademacher complexity

for data-driven optimization (Bertsimas and Kallus 2019). Finally, the learning performed by our

generative model bears a loose resemblance to estimation of distribution algorithms (EDAs), com-

monly used in evolutionary and black-box optimization (Pelikan et al. 2002). Because our work

is most closely tied to interior point methods and the “learning to optimize” literature, we focus

specifically on those two areas below.

2.1. Interior point methods

Interior point methods are among the most popular techniques for solving constrained optimization

problems (Nesterov and Nemirovskii 1994). A constrained problem minx {f(x) | x∈X} is trans-

formed into an unconstrained problem via a barrier function B(x). The barrier satisfies two prop-

erties: (i) B(x) = 0 (i.e., logB(x) =−∞) when x is infeasible, and (ii) B(x)> 0 when x is strictly

feasible. The resulting problem is minx{f(x)−λ logB(x)} where λ> 0 is the dual parameter.

Given a differentiable barrier function and an initial solution x(0), IPMs use the Newton method

to iterate over a sequence {(λj,x(j))}∞j=0 until convergence to an optimal solution. These methods

have found the most success in linear and quadratic optimization where it is possible to give theoret-

ical guarantees on optimality as well as fast empirical convergence rates (Gondzio 2012). However,

recent development of a new class of barrier functions known as entropic barriers have renewed
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interest in interior point methods for challenging (i.e., arbitrary) convex feasible sets (Bubeck and

Eldan 2019). The most similar work to ours is by Badenbroek and de Klerk (2018) who solve

a sampling-based IPM using a membership oracle for the feasible set and the aforementioned

entropic barrier. IPMs have also been adapted for non-convex optimization problems (Vanderbei

and Shanno 1999, Benson et al. 2004, Hinder and Ye 2018) although in this setting, efficiency

guarantees generally do not exist.

The previous papers all assume access to either explicit constraints or at least a barrier function

for the entire feasible set. In this work, we assume access to only a polyhedral relaxation of the true

feasible set and learn feasibility via a classification model trained on labelled decisions. Furthermore,

the previous papers focus on determining efficiency and complexity analyses of their algorithm for

a single given instance of an optimization problem. Because we consider the problem of learning

to optimize over a set of problem instances, we focus instead on in-sample and out-of-sample

guarantees for the model rather than the efficiency of the IPM algorithm.

2.2. Learning to optimize

2.2.1. The operations research perspective. Learning to construct optimal solutions from

auxiliary feature data is, in most cases, performed by embedding the output of a machine learning

model as parameters in an optimization model (Angalakudati et al. 2014, Ferreira et al. 2015,

Elmachtoub and Grigas 2017, Mǐsić 2019, Liu et al. 2018). This approach is particularly effective

when there exists an important parameter in the problem and a clear relationship between it and

the features (e.g., the demand in a revenue model (Ferreira et al. 2015)).

Non-parametric methods construct functions that map feature data to the optimal solution or

the optimal value of the problem. This is often a stochastic optimization problem with a ran-

dom objective conditioned on the input. Kao et al. (2009), Ban and Rudin (2018), and Bertsimas

and Kallus (2019) consider Empirical Risk Minimization (ERM) where the objective is to learn a

function that takes auxiliary data as input and outputs an optimal solution. However, it is often

difficult to use advanced, expressive models while preserving computational tractability. Conse-

quently, Hannah et al. (2010), Bertsimas and Kallus (2019), and Bertsimas and McCord (2018)

consider a weighted learning framework, where the goal is to obtain a function that determines

the weights (i.e., the conditional probability terms) using a sample-average approximation of the

stochastic optimization problem.

Our work shares a similar approach to Ban and Rudin (2018) who use ERM to construct a

predictor for the optimal solution to a newsvendor problem. As in their paper, we study out-of-

sample generalization of the learning model. However, the key difference is that the newsvendor

problem is only constrained by the non-negativity of the order quantities. In contrast, our focus
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on using ERM applies to a more general set of constraints. Our key contribution is to incorporate

constraint satisfaction as the output of a binary classification model.

Bertsimas and Kallus (2019) remark on the challenges of constraint satisfaction when using

the ERM approach and, consequently, focus on weighted learning. However, they also prove sev-

eral generalizability results arising from ERM. Our paper further explores the avenue introduced

by Bertsimas and Kallus (2019) by extending their generalization bound to our IPM framework.

2.2.2. The deep learning perspective. Recent advances in deep learning have prompted

a resurgent interest in using neural networks to solve optimization problems (Bengio et al. 2018).

Generally, a model is trained by minimizing a loss function that encourages the model to output

optimal solutions to problem instances. While the literature mostly focuses on benchmark combi-

natorial problems such as the Traveling Salesman Problem (TSP) (Vinyals et al. 2015, Bello et al.

2017, Dai et al. 2017), there is an increasing interest in other operational applications (Donti et al.

2017, Larsen et al. 2018). Methodologically, Vinyals et al. (2015) and Larsen et al. (2018) use super-

vised learning, where a data set of problem instances and optimal solutions are used to train the

model. On the other hand, Bello et al. (2017) and Dai et al. (2017) train a reinforcement learning

agent to navigate the space of decisions. Finally, Donti et al. (2017) consider a gradient-descent

algorithm that encourages predicting feasible and optimal solutions.

A major challenge in learning to predict optimal solutions is that it is difficult to enforce challeng-

ing constraints using a predictive model. The design of the neural network architecture sometimes

naturally enforces certain structural constraints. For example, a pointer network is a recurrent neu-

ral network that returns permutations of a sequence making it ideal for satisfying tour constraints

in a TSP (Vinyals et al. 2015). Alternatively, if the learning process is supervised, simply using

a high-quality data set may be empirically sufficient (Larsen et al. 2018). A third approach is to

customize the loss function to encourage constraint satisfaction (Donti et al. 2017). Regardless of

the approach, a major benefit of learning to predict solutions over optimization is the speed at

which solutions are produced. That is, after training has concluded, the model requires a simple

function call (e.g., a neural network) to return a solution. Thus, the deep learning approaches

produce heuristics that are significantly faster than conventional solvers (Bello et al. 2017, Larsen

et al. 2018). The drawback is that they do not admit formal optimality guarantees.

We preserve the efficiency of learning algorithms while addressing the problem of constraint

satisfaction. More specifically, we consider constraints that are not formally stated, but rather,

are implicitly provided via data and an oracle. Further, we provide optimality guarantees on the

solutions generated by the deep learning model as well as characterizing the out-of-sample error.
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3. Constrained optimization with a partially specified feasible set

We define the problem of solving a constrained optimization problem when the feasible set is

specified only by common constraints and auxiliary data. We introduce notation in Section 3.1,

before describing the problem and assumptions in Section 3.2. In Section 3.3, we propose a new

barrier problem and prove both optimality and feasibility guarantees for our generalization.

3.1. Notation

We denote vectors by bold and sets by calligraphic script. The interior, boundary, and closure of a

set are denoted int(X ), bd(X ), and cl(X ) respectively. The exclusion of X1 from X2 ⊇X1 is denoted

as X2 \X1. We denote probability distributions using P. The support of a probability distribution

is denoted supp(P). Samples from a random variable x∼ P are accented x̂∼ P. ‖·‖ refers to the

l2 norm unless specified otherwise. A function f(x) is L-Lipschitz continuous in x if there exists a

constant L> 0 such that |f(x1)− f(x2)| ≤L‖x1−x2‖ for all x1,x2.

3.2. Problem setup

Let u ∈ U denote auxiliary inputs that describe our optimization problem and Pu the probability

distribution of inputs. Let x∈Rn denote decisions and for a given u, consider the problem

OP(u) : min
x
{f(x) | x∈X (u)}

where f(x) is an objective function and X (u) is a feasible set determined by u. We assume f(x) =

fTx is linear without loss of generality; that is, our results extend to convex objectives with minor

modifications. We also make the following assumptions about X (u):

1. The space of inputs U is compact, continuous, and has a non-empty interior.

2. For all u ∈ U , the feasible set X (u) is compact, continuous, and has a non-empty interior.

Furthermore, the joint set {(x,u) | x∈X (u),u∈ U} is compact.

3. We know a full-dimensional polyhedral relaxation P =
{
x | aT

mx≤ bm,m= 1, . . . ,M
}

such that

X (u)⊂ int(P) for all u.

4. Although we do not know X (u) a priori, we have access to:

(a) A data set of feasible decision and input pairs D= {(x̂i, ûi)}Nx

i=1, where x̂i ∈X (ûi) for all

i∈ {1, . . . ,Nx}. In general, the data set may include multiple feasible decisions per input.

This data is sampled i.i.d. from a distribution P(x,u).

(b) A feasibility oracle Ψ(x,u) where Ψ(x,u) = 1 if x∈X (u) and Ψ(x,u) = 0 otherwise.

The first assumption ensures that the auxiliary inputs belong to a well-behaved set (i.e., compact,

continuous, and non-empty). The second and third assumptions ensure that the instance-specific

feasible sets have similar requirements. The set P represents the space defined by the common

constraints that all instances must satisfy in addition to the instance-specific constraints. Finally,
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the fourth assumption describes the available data to learn to construct an optimal solution to

OP(u). In practice, the data set of feasible solutions may represent previously implemented deci-

sions which are required to learn an approximation of the feasible sets X (u). The oracle Ψ(x,u)

helps guide the search for an optimal solution by ensuring that any constructed solution is feasible.

3.3. Optimization with a δ-barrier

Consider an instance OP(u) for a fixed u. Although X (u) is unspecified, we know a relaxation

P ⊃X (u). Were the relaxation tight (i.e., P = X (u)), then we could consider a canonical barrier

function (i.e., defining B(x) such that logB(x) =
∑M

m=1 log (bm−aT
mx)) and use an IPM to obtain

an optimal solution x∗(u) to OP(u) (Nesterov and Nemirovskii 1994). However, if X (u)⊂P, then

the barrier incorrectly returns B(x)> 0 for all x∈P \X (u).

For this problem, the canonical barrier belongs to a class of functions that are barriers over a

relaxation or super-set of X (u). Consider functions Bδ(x,u) such that Bδ(x,u)> 0 for all x∈X (u),

and Bδ(x,u) = 0 for all x that are sufficiently far from X (u). We define these functions as δ-barriers.

Definition 1. For some δ > 0, let Nδ (X (u)) = {x + ε | x∈X (u),‖ε‖< δ} be a δ-neighbourhood

around X (u). A δ-barrier Bδ(x,u) :Rn×U → [0,1) is a function that satisfies

X (u)⊂ {x |Bδ(x,u)> 0} ⊆Nδ (X (u)) .

Note that for a given barrier function B(x,u) supported over a super-set of X (u), δ is equivalent

to the Hausdorff distance between X (u) and the support of the function, i.e.,

δ= dH
(
X (u),{x |B(x,u)> 0}

)
= min

ξ≥0

{
ξ
∣∣ {x |B(x,u)> 0} ⊆Nξ (X (u))

}
. (1)

Remark 1. Let ∆(u) = dH(X (u),P). A canonical barrier for P is a ∆(u)-barrier for X (u). As

P is known, we always assume δ≤∆(u).

Given a δ-barrier Bδ(x,u), let λ> 0 be a constant corresponding to the Lagrangian dual variable.

We then define the unconstrained barrier optimization problem

BP(u,Bδ, λ) : min
x
{f(x)−λ logBδ(x,u)} (2)

Remark 2. We assume without loss of generality of using a single δ-barrier to determine feasibil-

ity. Canonical barriers in IPMs generally sum multiple barriers each addressing a single constraint

(e.g.,
∑M

m=1 log (bm−aT
mx) for P). Our results also generalize to multiple δ-barriers in one problem.

The optimal value of BP(u,Bδ, λ) is bounded by the optimal value of OP(u).

Theorem 1. Let x∗(u) be an optimal solution to OP(u). For any λ> 0, BP(u,Bδ, λ) is bounded

and feasible. An optimal solution xλ(u) to BP(u,Bδ, λ) is (δ, ε)-optimal for OP(u):

f
(
xλ(u)

)
− ε < f (x∗(u))< f

(
xλ(u)

)
+ δL, (3)

where L is the Lipschitz constant of f(x) and ε=Cλ, where C is a positive constant.
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Proof of Theorem 1. We first prove that BP(u,Bδ, λ) is bounded and feasible. Note that for

any λ > 0, the second term, −λ logBδ(x,u), is also bounded below since Bδ(x,u) ∈ [0,1). More-

over, BP(u,Bδ, λ) is only feasible within {x |Bδ(x,u)> 0} ⊂ P. By assumption, P is closed and

bounded, meaning f(x), by assumption of linearity, has a bounded minimum within P. Therefore,

BP(u,Bδ, λ) must have a bounded optimal solution. To show feasibility, note that by the definition

of a δ-barrier, any solution that is feasible for OP(u) is also feasible for BP(u,Bδ, λ).

Suppose we choose ε=−λ logBδ(x
∗(u),u)). By definition, 0<Bδ(x

∗(u),u)< 1, implying that

C :=− logBδ(x
∗(u),u)> 0 is valid. Let xλ be an optimal solution to BP(u,Bδ, λ). We first prove

that f(xλ(u))− ε < f(x∗(u)):

f (x∗(u)) + ε= f (x∗(u))−λ logBδ (x∗(u),u)

≥ f
(
xλ(u)

)
−λ logBδ

(
xλ(u),u

)
> f

(
xλ(u)

)
.

The first inequality follows from the optimality of xλ(u) for BP(u,Bδ, λ) while the second inequal-

ity follows from logBδ(x
λ(u),u)< 0, meaning that −λ logBδ(x

λ(u),u)> 0 and can be removed.

Moving ε to the right-hand-side gives the lower bound.

The proof for f(x∗(u))< f(xλ(u))+δL has two cases. If xλ(u)∈X (u), then by the optimality of

x∗(u) for OP(u), we have f(x∗(u))≤ f(xλ(u))< f(xλ(u)) + δL. Otherwise if xλ(u)∈Nδ (X (u)) \
X (u), then let x̃∈ arg minx∈X (u)

∥∥xλ(u)−x
∥∥ be the projection of xλ(u) on X (u). Then,

f (x∗(u))− f
(
xλ(u)

)
≤ f(x̃)− f

(
xλ(u)

)
≤
∣∣f(x̃)− f

(
xλ(u)

)∣∣
≤
∥∥x̃(u)−xλ(u)

∥∥L
< δL.

The first inequality follows from the optimality of x∗(u) over x̃ for OP(u). The third inequality

follows from the Lipschitz continuity of f(x) and the fourth by definition of the δ-barrier. Therefore,

the upper bound in inequality (3) is proved for both cases. �

The (δ, ε)-optimality inequality proved in Theorem 1 generalizes the classical ε-optimality bound

of IPMs (Nesterov and Nemirovskii 1994). That is, when δ= 0, we obtain f(xλ(u))−ε < f(x∗(u))<

f(xλ(u)). Furthermore, similar to classical IPMs, the (δ, ε)-optimality of solutions to BP(u,Bδ, λ)

can be controlled by tuning λ. Specifically because ε=Cλ for a fixed C, as λ goes to 0, so does ε.

In a classical IPM, the barrier problem is repeatedly solved over a sequence of decreasing λ (Boyd

and Vandenberghe 2004). In that setting, a large λ guarantees that the barrier problem yields

solutions in the interior of the feasible set, while small λ guarantees solutions close to the true
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f(x)

x∗(u) xλ0(u)

xλ1(u)

xλ2(u)

xλ3(u)

Figure 1 The bold shape is P and the filled region is X (u). We consider a canonical barrier for P, where the

dotted lines are contours for the barrier. An optimal solution to OP(u) is x∗(u).

optimum. Here however, ε may decrease but δ is a property of the barrier itself. Therefore, we

can only guarantee that for large λ, an optimal solution xλ(u) is sub-optimal for OP(u) but as

λ decreases, the optimal solution may have lower objective function value, i.e., become infeasible.

Figure 1 shows a sample sequence of decreasing λ and corresponding solutions xλ(u). In the

Electronic Companion EC.1, we show that this behavior holds more generally and formally prove

that the δ-barrier IPM inherits many of the same properties as the classical IPM.

4. Interior Point Methods with Adversarial Networks

We now develop a learning-based approach to solving instances of OP(u). We first introduce our

main algorithm that iteratively trains two machine learning models. The algorithm consists of (i)

a classifier that learns to distinguish feasibility for OP(u), and thus, approximates a δ-barrier for

any u; and (ii) a generative model that uses the classifier to learn to predict (δ, ε)-optimal solutions

to OP(u) for a given u.

We require a data set of feasible solutions D as well as an oracle Ψ(x,u) as introduced in

Section 3.2. Furthermore, let Û = {ûi}Nu

i=1 = {û | ∃x̂ : (x̂, û) ∈ D} denote a data set of inputs. In

general, Nu ≤Nx as this data set is obtained by collecting the unique auxiliary inputs from D. We

also assume an additional data set of infeasible solutions, D̄= {(x̂ī, ûī)}N̄x

ī=1 where x̂ī ∈Rn \X (ûī).

This data set arrives from a distribution P̄(x,u), similar to D∼ P(x,u). Unlike D however, D̄ is usually

not available a priori. Instead as we show in our numerical results, D̄ is generated by sampling.

4.1. Overview of the main algorithm

Let F = {F : U →Rn} denote a class of generative models. Let B = {B : Rn×U → [0,1]} denote a

class of binary classifiers. In each iteration, we first train B(x,u)∈B to correctly label points in D



Babier et al.: Learning to optimize with hidden constraints
12

and D̄. We then re-train F (u)∈F over Û via an IPM that uses the binary classifier as the barrier

function. After each step of the IPM, the oracle Ψ(x,u) labels the solutions generated by F (u) as

either feasible or infeasible. At the end of the iteration, we add these points to D and D̄. In this

way, the training data for the classifier is augmented so that we iteratively learn a δ-barrier that

more closely approximates X (u) for any u. Let k index the iterations, starting from 1. The k-th

iteration proceeds as follows:

1. Train the classifier B ∈ B to predict (x̂i, ûi) ∈D(k) as feasible and (x̂ī, ûī) ∈ D̄(k) as infeasible

solution-input pairs by solving the Feasibility Classification Problem:

FCP(D(k), D̄(k)) : sup
B∈B

{
1

Nx

Nx∑
i=1

logB(x̂i, ûi) +
1

N̄x

N̄x∑
ī=1

log (1−B(x̂ī, ûī))

}
. (4)

The objective function is known as the cross-entropy loss function in machine learning (Good-

fellow et al. 2016). Let B(k) be an optimal solution to FCP(D(k), D̄(k)). The optimal value is

0 and achieved when B(k) satisfies B(k)(x̂i, ûi) = 1 and B(k)(x̂ī, ûī) = 0.

2. Fix an initial dual parameter λ0 > 0 and a decay rate 0< ν < 1. Let M > 0 denote the number

of IPM steps and, for j ∈ {0, . . . ,M}, let λj = λ0ν
j denote the dual parameter. We train the

generative model to predict optimal solutions to BP(ûi,B
(k), λj) for all ûi ∈ Û . This task is

referred to as the Generative Barrier Problem:

GBP(Û ,B(k), λj) : min
F∈F

{
1

Nu

Nu∑
i=1

f
(
F (ûi)

)
−λj logB(k)

(
F (ûi), ûi

)}
. (5)

Let F (j,k) be an optimal solution to GBP(Û ,B(k), λj). Whereas BP(u,Bδ, λ) directly opti-

mizes for a single u, GBP(Û ,B(k), λj) is an empirical risk minimization problem that trains

F (j,k)(u) to predict xλj (u). Furthermore, we now use the classifier B(k)(x,u) as the δ-barrier.

3. For each pair (F (j,k)(ûi), ûi), use the oracle Ψ(x,u) to validate whether the generative model

outputs a feasible or infeasible solution. Append the predicted solution to D(k) or D̄(k):

D(k+1) =D(k) ∪Q, where Q :=
{

(F (j,k)(ûi), ûi)
∣∣∣Ψ(F (j,k)(ûi), ûi) = 1, ûi ∈ Û

}
(6)

D̄(k+1) = D̄(k) ∪ Q̄, where Q̄ :=
{

(F (j,k)(ûi), ûi)
∣∣∣Ψ(F (j,k)(ûi), ûi) = 0, ûi ∈ Û

}
(7)

Note that for all ûi ∈ Û , the generative model will always produce solutions that satisfy

B(k)(F (j,k)(ûi), ûi) > 0. The oracle then checks whether B(k)(x,u) is correct for each point.

Then, the classifier can correct itself in the k+ 1-th iteration.

Figure 2 shows the steps and the outcome for a single iteration k and a single ûi. In the remainder

of this section, we discuss several desirable properties of this algorithm. We first show that the

classifier learns to approximate a δ-barrier. We then show that the generative model satisfies a (δ, ε)-

optimality guarantee on in-sample instances, albeit not as strong as one that would be obtained
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(a) B(k) learns to classify points in

D(k) and D̄(k).

(b) F (j,k) is trained to predict a

sequence of solutions given λj .

(c) After binning, we obtain a tighter

barrier in the next iteration.

Figure 2 One iteration of IPMAN for a single ûi. ♦ and � represent D and D̄, respectively. The filled region is

X (u) and the bold line on the outside is P. The inner solid lines show the support of B(k)(x,u).

were we to directly solve BP(ûi,Bδ, λ). Finally, we show that the data augmentation procedure

shrinks the set of optimal solutions to FCP(D, D̄). Thus, each iteration learns a δ-barrier that

more closely approximates X (u) for any u.

4.2. A data-driven δ-barrier

A perfect barrier function where δ = 0 is a perfect classifier of feasibility. That is, it returns pos-

itive values if and only if the input x is feasible for OP(u), and zero otherwise. A δ-barrier can

perfectly classify feasible points, but potentially incorrectly classify infeasible points. By solving

this classification problem, B(x,u) learns to approximate a δ-barrier.

We assume that the classifier is sufficiently parameterized to be able to describe a complex, and

potentially non-convex feasible set. A sufficient condition would be that the model class B satisfies

a Universal Approximation property.

Assumption 1. B satisfies a Universal Approximation Theorem (Hornik 1991). That is, for

any continuous function B∗(x,u) :Rn×U → [0,1] and degree of accuracy ε > 0, there exists B ∈B
such that |B(x,u)−B∗(x,u)|< ε for all x∈Rn, u∈ U .

Lemma 1 (Arjovsky and Bottou (2017)). Let B satisfy Assumption 1. If D(k) and D̄(k) are

closed, then FCP(D(k), D̄(k)) is feasible and has an optimal value equal to 0.

Remark 3. Arjovsky and Bottou (2017) prove Lemma 1 by showing the cross-entropy loss

function yields an optimal value of 0 whenever the two classes to be predicted are supported over

compact and disjoint sets. We observe that closedness, rather than compactness, is sufficient.

Proof of Lemma 1. Because B(x,u) ∈ [0,1], the optimal value must be 0 and is attained only

when B(k)(x,u) = 1 for all (x,u) ∈ D(k) and B(k)(x,u) = 0 for all (x,u) ∈ D̄(k). Then, Urysohn’s
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Smooth Lemma states that given two closed and disjoint sets A and A′, there exists a continuous

function for which f(A) = 1 and f(A′) = 0 (Engelking 1977). Now note that for any iteration,

D(k) ⊂
{

(x,u)
∣∣ x∈X (u),u∈ U

}
D̄(k) ⊂

{
(x,u)

∣∣ x∈Rn \X (u),u∈ U
}
,

meaning that they are always disjoint and, by assumption, closed. Therefore, there exists a contin-

uous function that achieves the optimal value to FCP(D(k), D̄(k)). Thus, by Assumption 1, there

exists B(x,u)∈B that can approximate the supremum. �

Intuitively for FCP(D(k), D̄(k)), we require that the two data sets, D(k) and D̄(k), be disjoint

and sufficiently far from each other to ensure that a classifier can learn a separation between their

supports. Our problem naturally provides the disjoint property as the two data sets arise from

solutions that are correctly labeled as feasible and infeasible, respectively. Figure 2(a) demonstrates

an example of this intuition. We also observe that the optimal solution set to FCP(D(k), D̄(k)) is

large and any function that separates the two sets is optimal.

Given a limited data set, solving FCP(D(k), D̄(k)) may not yield a practically useful classifier.

For example, an optimal classifier may over-fit to the data, be unnecessarily complex, or may mis-

classify regions where data is not available. In order to ensure that the classifier is a δ-barrier, we

assume sufficient data so as to be able to solve the stochastic optimization variant of FCP(D, D̄):

FCP(P(x,u), P̄(x,u)) : sup
B∈B

{
Ex,u∼P(x,u)

[
logB(x,u)

]
+Ex,u∼P̄(x,u)

[
log
(
1−B(x,u)

)]}
. (8)

Remark 4. The key difference between FCP(D(k), D̄(k)) and FCP(P(x,u), P̄(x,u)) is that the

latter permits arbitrary probability distributions rather than discrete empirical distributions. An

optimal solution to FCP(P(x,u), P̄(x,u)) satisfies B(k)(x,u) = 1 for all (x,u) ∈ supp(P(x,u)) and

B(k)(x,u) = 0 for all (x,u)∈ supp(P̄(x,u)), so long as they are closed and disjoint. Further, because

D̄(k) can be generated by sampling, we always assume access to a distribution P̄(x,u) for which

supp(P̄(x,u))⊇ {(x,u) | x∈Rn \P,u∈ U}. The remaining difference in studying the stochastic ver-

sus the data-driven classification problems is that the data set of feasible solutionsD(k) is sufficiently

large.

If the supports of P(x,u) and P̄(x,u) are over the feasible and infeasible sets respectively, then the

Feasibility Classification Problem yields a δ-barrier.

Corollary 1. Let B(k)(x,u) be the optimal solution to FCP(P(x,u), P̄(x,u)) which achieves an

optimal value of 0. At the optimum, the following statements are true:

1. If supp(P̄(x,u))⊇ {(x,u) | x∈Rn \P,u∈ U}, then for any u∈ U , {x |B(k)(x,u)> 0} ⊆P.
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2. If supp(P̄(x,u))⊇ {(x,u) | x∈Rn \P,u∈ U} and supp(P(x,u)) = {(x,u) | x∈X (u),u∈ U}, then

for any ζ ∈ (0,1), the scaled classifier ζB(k)(x,u) is a δ-barrier for some δ≤∆(u).

Proof of Corollary 1. FCP(P(x,u), P̄(x,u)) achieves an optimal value of 0 if and only if

B(k)(x,u) = 1 for all (x,u)∈ supp(P(x,u)) and B(k)(x,u) = 0 for all (x,u)∈ supp(P̄(x,u)). Thus,{
(x,u)

∣∣ x∈Rn \P,u∈ U}⊆ supp(P̄(x,u))⊆
{

(x,u)
∣∣B(k)(x,u) = 0,u∈ U

}
.

For any fixed u, rearranging the set inclusions proves the first statement.

To prove the second statement, note that

supp(P(x,u))⊆
{

(x,u)
∣∣B(k)(x,u)> 0

}
⊂ {(x,u) | x∈P,u∈ U} ,

where the first inclusion follows by definition and the second from Statement 1 of Corollary 1. We

fix ζ ∈ (0,1) so that ζB(k)(x,u) ∈ [0,1). Because a canonical barrier for P is a ∆(u)-barrier (see

Remark 1) and ζB(k)(x,u) has smaller support, the classifier is a δ-barrier for δ≤∆(u). �

Corollary 1 states that given access to two disjoint distributions P(x,u) and P̄(x,u) with closed

supports, B(k)(x,u) will learn a boundary between them. The first statement ensures that for any

u, the optimal classifier has a closed and bounded support that is smaller than P. The second

statement is a sufficient condition for B(k)(x,u) to be a δ-barrier. Furthermore, because D̄ can be

generated by sampling from Rn \P, we therefore assume access to a distribution P̄(x,u) supported

over {(x,u) | x∈Rn \P,u∈ U} which implies that the first statement is always satisfied in practice.

However, satisfying the second statement is contingent on access to a data set whose support is

equal to {(x,u) | x ∈ X (u),u ∈ U}. In Step 2 of the IPMAN algorithm, the generated points are

used to augment the two data sets and produce a better classifier.

4.3. In-sample optimality guarantees

We train a generative model F (u) to solve GBP(Û ,B(k), λj) for a decreasing sequence of λj > 0. As

a result, F (u) learns to predict optimal solutions to the barrier problem xλ(u) in an unsupervised

fashion, i.e., without using xλ(u) or x∗(u). Moreover, the approximation error of F (ûi) versus

x∗(ûi) is also bounded, which we characterize below.

Theorem 2. Fix ûi ∈ Û and λj > 0 and consider B(k)(x,u) and F (j,k)(x,u). Let xλj be an

optimal solution to BP(ûi,B
(k), λj) Then, there exists δ, ε > 0 such that∣∣f(F (j,k)(ûi)

)
− f
(
x∗(ûi)

)∣∣< ∣∣f(F (j,k)(ûi)
)
− f
(
xλj (ûi)

)∣∣+ max(δL, ε)

Proof of Theorem 2. By the Triangle inequality,∣∣f(F (j,k)(ûi)
)
− f
(
x∗(ûi)

)∣∣≤ ∣∣f(F (j,k)(ûi)
)
− f
(
xλj (ûi)

)∣∣+ ∣∣f(xλj (ûi))− f(x∗(ûi))∣∣
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We consider two cases: when B(k)(x∗, ûi)> 0 and when B(k)(x∗, ûi) = 0.

First, if B(k)(x∗, ûi)> 0, then let X̂ (ûi) =X (ûi)∩{x |B(k)(x, ûi)> 0} be the correctly classified

subset of X (ûi). We need only consider this subset as the feasible set when solving OP(ûi), since

x∗(ûi) remains feasible. However, B(k)(x, ûi) is a δ-barrier for the subset. From Theorem 1, xλj (ûi)

is (δ, ε)-optimal and we bound |f(x∗(ûi))− f(xλj (ûi))|<max(δL, ε).

If B(k)(x∗, ûi) = 0, then the classifier is not a δ-barrier for X (ûi). Instead, we will construct a

“test” δ-barrier from B(k)(x, ûi) and show that xλj (ûi) is still an optimal solution for this artificial

barrier and thus, is (δ, ε)-optimal.

Fix a constant parameter ε > 0. Let xP ∈ arg minx{f(x) | x∈P} and let B̄ be defined as follows:

1

B̄
= max

{
1 + ε, exp

[(
f
(
xλj (ûi)

)
− f
(
xP
)) 1

λj
− logB(k)

(
xλj (ûi), ûi

)]}
. (9)

Note that B̄ ∈ (0,1). Then, the following function BTest(x) is a δ-barrier for OP(ûi):

BTest(x) =

{
B(k)(x, ûi), ∀x∈ {x |B(k)(x, ûi)> 0}
B̄, ∀x∈X (ûi)∩{x |B(k)(x, ûi) = 0}.

We show that xλj (ûi) is an optimal solution to BP(ûi,B
Test, λj). By definition, xλj (ûi) is optimal

in {x |B(k)(x, ûi)> 0}. To show that it is also optimal in X (ûi)∩{x |B(k)(x, ûi) = 0}, we observe

− log B̄ ≥
(
f
(
xλj (ûi)

)
− f
(
xP
)) 1

λj
− logB(k)

(
xλj (ûi), ûi

)
.

The above inequality is obtained by transforming the maximum in (9) to an inequality and taking

the logarithm on both sides. Re-arranging this inequality yields

f
(
xλ(ûi)

)
−λj logB(k)

(
xλj (ûi), ûi

)
≤ f
(
xP
)
−λj log B̄ (10)

≤ f
(
x
)
−λj log B̄, ∀x∈X (ûi). (11)

We obtain (11) because X (ûi)⊂ P and consequently, f(xP)≤ f(x) for all x ∈ X (ûi). Therefore,

xλj (ûi)∈ arg minx {f(x)−λj logBTest(x)}. From Theorem 1, xλj (ûi) is (δ, ε)-optimal. �

Theorem 2 illustrates the key strengths and challenges with the IPMAN algorithm. Intuitively,

the proof considers two cases: one where the classifier B(k)(x,u) is a δ-barrier for a given OP(u),

and one where it isn’t. If the classifier is a δ-barrier, then it is straightforward to bound the

quality of the model predictions by directly optimizing BP(u,B(k), λj) and comparing against the

optimal solution. However, the learned classifier may not yet be a δ-barrier if there are insufficient

points. In this scenario, we can still bound the (δ, ε)-optimality of predicted solutions by artificially

constructing a δ-barrier from the classifier. Therefore, the in-sample performance of F (j,k)(u) can

always be measured at any iteration. Unlike for a δ-barrier, however, the (δ, ε)-optimality bound

using a classifier does not necessarily converge to 0 as we decrease λj.
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4.4. Data augmentation via the oracle

At every iteration, the oracle evaluates the generative models by labelling the predictions as feasible

or infeasible. If Ψ(F (j,k)(ûi), ûi) = 1 for any ûi, then (F (j,k)(ûi), ûi) is added to the data set of

feasible solutions D(k). Otherwise, it is added to D̄(k). Consequently, these two data sets grow

after each iteration and the augmented sets are used to train B(k+1)(x,u). This data augmentation

procedure implies that the classifier can learn to become a tighter approximation of X (u).

Proposition 1. For any k, let B(k) be the optimal solution set of FCP(D(k), D̄(k)). If B satisfies

Assumption 1 and the data sets are closed, then B(k+1) ⊂B(k).

Proof of Proposition 1 From Lemma 1, the optimal value of FCP(D(k), D̄(k)) is 0, since the

data sets are closed and disjoint. The augmentations Q and Q̄ are also closed and disjoint:

Q⊆ {(x,u) | x∈X (u),u∈ U}

Q̄ ⊂ {(x,u) | x∈Rn \X (u),u∈ U} .

Therefore, D(k+1) =D(k) ∪Q and D̄(k+1) = D̄(k) ∪ Q̄ are both closed and disjoint. From Lemma 1,

the optimal value of FCP(D(k+1), D̄(k+1)) is also 0.

To show B(k+1) ⊂ B(k), we first prove B(k+1) ⊆ B(k) and then present a counter-example which

disproves equivalence. The objective function of FCP(D(k+1), D̄(k+1)) is

1

|D(k+1)|
∑

(x̂,û)∈D(k+1)

logB(x̂, û) +
1

|D̄(k+1)|
∑

(x̂,û)∈D̄(k+1)

log
(
1−B(x̂, û)

)
=

α

|D(k)|
∑

(x̂,û)∈D(k)

logB(x̂, û) +
1−α
|Q|

∑
(x̂,û)∈Q

logB(x̂, û)

+
α′

|D̄(k)|
∑

(x̂,û)∈D̄(k)

log
(
1−B(x̂, û)

)
+

1−α′
|Q̄|

∑
(x̂,û)∈Q̄

log
(
1−B(x̂, û)

)
,

where α = |D(k)|/|D(k+1)| and α′ = |D̄(k)|/|D̄(k+1)| are the mixture weights defining the ratio of

existing to new points in each data set. Because the optimal value of FCP(D(k+1), D̄(k+1)) is 0 and

B(x,u)∈ [0,1], each of the individual terms must be equal to 0 for an optimal solution. However, the

first and third terms define the objective function for FCP(D(k), D̄(k)). Thus, any optimal solution

B(k+1) to FCP(D(k+1), D̄(k+1)) must also be optimal for FCP(D(k), D̄(k)) implying B(k+1) ⊆B(k).

To prove the inclusion is strict, consider the closed and disjoint sets D(k) ∪ Q̄ and D̄(k). By

Lemma 1, there exists a function B∗(x,u) such that B∗(x,u) = 1 for all (x,u) ∈ D(k) ∪ Q̄ and

B∗(x,u) = 0 for all (x,u) ∈ D̄(k), i.e., B∗ ∈ B(k). However, then B∗(x̂, û) = 1 for all (x̂, û) ∈ Q̄ and

B∗(x,u) has an infinite objective function value for FCP(D(k+1), D̄(k+1)). Thus, B∗ /∈B(k+1). �
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After each iteration of the IPMAN algorithm, D(k) and D̄(k) are augmented. By augmenting

D̄(k), we correct regions that the classifier has incorrectly labelled as feasible. On the other hand,

augmenting D(k) reinforces regions where the classifier has correctly labelled points so that it does

not incorrectly mislabel the region in a subsequent iteration.

Because X (u) is not known, it is difficult to determine whether the classifier is, in fact, a δ-barrier

for a given u. From the proof of Theorem 2, we know that even if the classifier is not a δ-barrier,

there exists an equivalent δ-barrier for the classifier as well as a fixed λ> 0. It remains, therefore,

to estimate the value of δ for the classifier in order to fully characterize the optimality bound.

Corollary 2. If B(x, ûi) is a δ-barrier for OP(ûi), then δ≤ dH({x̂i | (x̂i, ûi)∈D(k)},bd(P)).

Proof of Corollary 2. By definition, δ = dH(X (ûi),{x | B(x, ûi) > 0}), where X (ûi) ⊆
{x |B(x, ûi)> 0}. Then,

dH
(
X (ûi),{x |B(x, ûi)> 0}

)
≤ dH

(
{x̂i | (x̂i, ûi)∈D(k)},{x |B(x, ûi)> 0}

)
≤ dH

(
{x̂i | (x̂i, ûi)∈D(k)},bd(P)

)
.

The first inequality follows from {x̂i | (x̂i, ûi)∈D(k)} ⊂X (ûi), and the second from {x |B(x, ûi)>

0} ⊆P and that the furthest point in P from {x̂i | (x̂i, ûi)∈D(k)} is on the boundary. �

By generating additional feasible points after each iteration, we can obtain a smaller δ. Further, to

compute the Hausdorff distance, we must calculate the distance of a fixed set of points to each of

the facets of the polyhedron. This problem can be solved via a finite number of linear programs.

5. Generalization of (δ, ε)-optimality to unseen instances

In this section, we evaluate the potential for a generative model to predict a (δ, ε)-optimal solution

when given an unseen out-of-sample problem instance u. Our analysis applies on any model and

is independent of the IPMAN algorithm itself. However, this analysis, when applied to IPMAN,

offers an opportunity to understand the true quality of the trained model at any iteration of the

algorithm. Although the optimal solution x∗(u) is not known, the objective function error between

f(F (u)) and the optimal value f(x∗(u)) can be bounded using the Triangle inequality

|f (F ∗(u))− f (x∗(u))|<
∣∣f (F ∗(u))− f

(
xλ(u)

)∣∣+ ∣∣f (x∗(u))− f
(
xλ(u)

)∣∣ .
From Theorem 1, the second term is bounded above by max{δL, ε}. Therefore, it only remains to

bound the empirical error of F (u) versus xλ(u) (i.e., the first term on the right-hand side).

We use Rademacher complexity theory to obtain a probabilistic bound on the empirical error

from an out-of-sample input (Bartlett and Mendelson 2002). Bertsimas and Kallus (2019) develop

generalization bounds for predicting decisions to problems with conditional stochastic optimization

objectives. We extend their work by providing a probabilistic bound on (δ, ε)-optimality when the

feasible set is not fully specified.
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Definition 2 (Bertsimas and Kallus (2019)). Let F ⊂ {F (u) : U → Rn} be a function

class and Û ∼ Pu be an i.i.d. data set. The empirical multivariate Rademacher complexity of F is

R̂Nu(F , Û) =Eσ∼pσ

[
2

Nu

sup
F∈F

Nu∑
i=1

σT
i F (ûi)

∣∣∣∣∣ Û = {ûi}Nu

i=1

]
,

where σi ∼ pσ is an n-dimensional vector of i.i.d. Rademacher variables. The multivariate

Rademacher complexity of F is RNu(F) =EÛ∼Pu
[
R̂Nu(F , Û)

]
.

Rademacher complexities are often used to generate risk bounds in various statistical learning

settings (Bartlett and Mendelson 2002). In order to ensure these bounds are practical, it is impor-

tant to use model classes F whose Rademacher complexities are bounded above as a function of

the data and parametrization. For generality, we leave the choice of model class open.

Remark 5. Although the literature mostly focuses on the single-variate Rademacher com-

plexity, Bertsimas and Kallus (2019) and Maurer (2016) prove bounds for several linear multi-

variate classes (e.g., FR = {Wu | ‖W‖ ≤ R}). In general, if F (u) = (F1(u), . . . ,Fn(u)), then F ⊂
×n`=1F`, where F` = {F (u)

T
e` | F ∈ F} and e` is the `-th identity vector. Then, R̂Nu(F , Û) ≤∑n

`=1 R̂Nu(F`, Û) decomposes to a sum of single-variate complexities. We refer to Bartlett and

Mendelson (2002) for Rademacher bounds for linear models and decision trees and Bartlett and

Mendelson (2002), Neyshabur et al. (2015), Foster et al. (2018) for neural networks.

GBP(Û ,Bδ, λ) is trained using a finite data set Û , meaning there is no guarantee whether F (u)

will be feasible or even satisfy Bδ(F (u),u)> 0 for an arbitrary u. Because P is available, however,

we can always project any generated solution to the polyhedron.

Assumption 2. If F (j,k) is an optimal solution to GBP(Û ,Bδ, λ), then the projected function

F ∗(u) = arg minx

{∥∥x−F (j,k)(u)
∥∥ | x∈P} is used at test time.

Our generalization bound follows from the bound of Bertsimas and Kallus (2019). While they

derive an empirical risk bound on an unconstrained stochastic optimization problem, we focus on

(δ, ε)-optimality for a constrained continuous optimization problem. We provide the proof in EC.2.

Theorem 3. Let F ∗ satisfy Assumption 2. Let K and L∞ be sufficiently large positive constants.

Let β ∈ (0,1) be a constant. Then, for any γ > 0, the following inequality holds

Pu

{
f
(
F ∗(u)

)
− ε− γ < f

(
x∗(u)

)
< f
(
F ∗(u)

)
+ δL+ γ

}

≥ 1−

1

Nu

Nu∑
i=1

∣∣f(F ∗(ûi))− f(xλ(ûi)
)∣∣+K

√
log(1/β)

2Nu

+
√

2nL∞RNu(F)

γ
,

with probability at least 1−β with respect to the sampling of Û .
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The quality of this bound is dependent on the generative model itself. The first term in the

numerator, (
∑Nu

i=1 |f(F ∗(ûi)) − f(xλ(ûi))|)/Nu, is the empirical error of solving GBP(Û ,Bδ, λ)

versus BP(ûi) for all ûi ∈ Û . This effectively measures how well the model performs on in-sample

data. The second term is dependent on the constants K and 1/β and scales with O(1/Nu). Finally,

the third term is dependent on the Rademacher complexity of F . Thus, in order to obtain a tight

and useful bound, we must balance the trade-off between a model class with high complexity versus

obtaining a final model with low empirical error.

Theorem 3 is a bound on the (δ, ε)-optimality of a random out-of-sample u. Note that we require

two distinct probability statements to describe this bound. The explicit statement is calculating,

given a γ and F ∗, the probability that the model will predict a (δ+γ/L, ε+γ)-optimal solution for

a random uNu+1 ∼ Pu. The probability of this event is bounded from below by the right-hand-side

of the relation in Theorem 3. However, the implicit statement is that this bound on the probability

will only hold with probability at least 1−β.

6. Predicting optimal dose in automated radiation therapy treatment
planning

We implement IPMAN to predict optimal dose distributions for patients with head-and-neck can-

cer. Treatment planning in head-and-neck cancer requires balancing the dose delivered to several

structures (i.e., organs-at-risk and targets). Clinics generally have strict institution-specific criteria

that their RT plans should meet. However, it is often impossible to construct doses distributions

that satisfy all of the criteria for a given patient, meaning an oncologist must determine which

criteria to prioritize. Such choices of prioritization are effectively hidden constraints known only to

an oncologist and obtained from their intuition and expertise rather than formal reasoning. In the

current practice however, the choices are facilitated via a surrogate multi-objective optimization

problem with parametric weights that are manually tuned.

Automated planning methods aim to predict treatments that achieve the desired dose trade-

offs while reducing oncologist intervention. An automated planning pipeline generally involves two

stages. First, a machine learning model uses a computed tomography (CT) image of the patient

to predict the dose that should be delivered. While the prediction may estimate which structures

to prioritize, the prediction often fails to fully meet the exact clinical criteria or is physically

undeliverable by the treatment machine. Consequently, a second stage optimization model is used

to correct and transform the prediction into a deliverable and clinically satisfactory treatment plan.

In this work, we recast the task of the machine learning problem from predicting a clinically

acceptable dose distribution to constructing an optimal dose distribution for a given patient. The

selection of clinical criteria to satisfy for a patient is modeled as a latent choice constraint dependent
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on the CT image, which is both specific to a patient and the institution providing care. Specifically,

a given dose is feasible if it satisfies the same set of criteria that the oncologist prescribed for the

patient. The objective function minimizes dose to the organs-at-risk (OARs), which describe the

healthy tissue in the patient.

A single objective for all patients allows us to form a standard notion of treatment optimality

based on minimizing radiation to healthy tissue. We show in our comparisons with benchmark

prediction models that treatment plans generated from IPMAN both (i) capture the same clinical

trade-offs that oncologists would prescribe after evaluation, and (ii) deliver the same or lower dose

on average to healthy tissue. An added benefit of our approach is that IPMAN can be adapted

so that it learns institution-specific criteria without training on a new data set of delivered plans.

In particular, we use the oracle to learn a constraint that was not present in the original data to

demonstrate how IPMAN can be deployed at cancer centers with different clinical criteria.

6.1. Data and model

We use a data set of 217 clinical treatment plans for patients with head-and-neck cancer, randomly

split into 100, 67, and 50 plans for training, validation, and held-out testing, respectively. Each

patient is discretized into a 128× 128× 128 tensor whose elements represent voxels (volumetric

pixels) of the patient’s geometry. For each patient i, the clinical data set contains a CT image

ûi ∈ R128×128×128 (representing the auxiliary input) and a 3-D dose distribution x̂i ∈ R128×128×128

(representing the treatment decision) that was prescribed by the oncologist. Each patient contains

up to four OARs and three tumor volumes, referred to as planning target volumes (PTVs), that

have been contoured and labelled.

Let O and T index the OARs and PTVs, respectively, and let R :=O∪T index all structures of

interest. For each structure, let Vr index the corresponding voxel set (elements of x and u). Let zr

denote the average dose delivered to structure r and z∈R7 denote the vector of zr. To illustrate the

IPMAN methodology, we formulate an RT optimization problem that minimizes the sum of average

doses delivered to the OARs subject to satisfying the relevant clinical criteria and known polyhedral

constraints (see Babier et al. 2018b). This model closely approximates the traditional weighted

optimization models that are used as a surrogate to the treatment planning problem. Although the

objective is simplified for the sake of computational efficiency, the constraints are representative

of the realistic clinical problem, which is the focus of our methodology (more discussion on model

choice is given in EC.3.1). The clinical criteria for each OAR is an upper bound on either the

mean zo or maximum dose delivered zmax
o , while the criteria for each PTV is a lower bound on the
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minimum dose delivered to the 90-th percentile z90
t (z90 ∈R3) of the target structure, a Value-at-

Risk (VaR) metric. We formulate each of the clinical criteria as a hidden bound ẑr(u) dependent

on the patient geometry and oncologist choice. The optimization problem is summarized below:

RT(u) : minimize
x,z,zmax,z90

1

|O|
∑
o∈O

zo (12a)

subject to zr =
1

|Vr|
∑
v∈Vr

xv r ∈R (12b)

zmax
o ≥ xv o∈O, v ∈ Vo (12c)

z90
t = VaR90

(
{xv | v ∈ Vt}

)
t∈ T (12d)

zr ≤ zr ≤ zr r ∈R (12e)

zo ≤ ẑo(u) o∈ {Right Parotid, Left Parotid, Larynx} (12f)

zmax
0 ≤ ẑo(u) o∈ {Mandible} (12g)

z90
t ≥ ẑt(u) t∈ T . (12h)

Constraints (12b)–(12d) define the dose summary statistics of the mean, maximum, and VaR.

In (12e), we mandate a fixed set of polyhedral constraints on z obtained by calculating the max-

imum and minimum mean doses over all patients in the ground truth data set; this constitutes

the polyhedral relaxation P. Finally, (12f)–(12h) define the hidden patient-specific constraints, i.e.,

the clinical criteria that must be learned. Whereas (12f) and (12g) ensure that the dose delivered

to each OAR is below a threshold, (12h) ensures that PTVs receive a sufficiently high dose of

radiation. Because it is not often possible to simultaneously satisfy all clinical criteria, these hidden

constraints are conditional. If the ground truth plan from the data set satisfied a hidden constraint

(i.e., an oncologist deemed it necessary), we require that a generated plan must satisfy it as well.

In other words for any patient ûi in our clinical data set,

ẑr(ûi) =


ẑr if the ground truth dose for ûi satisfies the bound in Table 1

+∞ otherwise for r ∈O
0 otherwise for r ∈ T

.

The hidden nature of these constraints arises from the fact that a planner does not know a priori if

the constraint is needed. Note that the VaR clinical criteria for each PTV is a non-convex constraint

and thus, the model would be difficult to solve directly even if the hidden constraints were known.

The values for the bounds ẑr are given in Table 1 (column 2).

6.2. Methods

We use two state-of-the-art benchmark models to analyze the quality of the predictions produced

by IPMAN: a U-net convolutional neural network (CNN) (Nguyen et al. 2019) and a generative
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adversarial network (GAN) (Mahmood et al. 2018). Nguyen et al. (2019) implement a CNN for

predicting dose distributions from 3-D CT images and show its effectiveness in the prediction stage

of automated planning. The CNN is trained via supervised learning by minimizing an l2 norm

of predicted doses from a ground truth clinical data set. Mahmood et al. (2018) implement a

conditional generative adversarial network to predict dose distributions from CT images. A GAN

is composed of two networks that are trained adversarially. The first is a generator G(u) that

creates sample dose distributions from CT images, while the second is a discriminator D(x,u) that

predicts whether a given sample was generated or belongs to a real data set. This discriminator is

used to help train the generator in producing more “realistic” doses.

As the generator and classifier in IPMAN play similar roles to the generator and discriminator

in a GAN, we use a slightly modified architecture from Mahmood et al. (2018) to create F (u) and

B(x,u) (details are provided in EC.3.2). Specifically for the experiments in Section 6.3, we include

an l1 regularization term ‖F (u)−u‖1 to the loss function of GBP(Û ,B,λj), which is commonly

used for model stability in Style Transfer GANs (e.g., Isola et al. 2017). All models are trained

using the Adam optimizer with (β1, β2) = (0.5,0.999). We train the classifier with a learning rate

of 1× 10−3 and the generator with a learning rate of 2× 10−5. Initially, the data set of feasible

decisions D = {(ûi, x̂i)}Nu
i=1 consists solely of the 100 clinical plans used in training, the data set

of parameters Û = {ûi}Nu
i=1 contains their corresponding patient CT images, and the data set of

infeasible decisions is empty (i.e., D̄= ∅).
Using the training set of patients, we train the generator and classifier iteratively with IPMAN.

At the end of each iteration, we evaluate the predictions made by the generator on the validation

set of patients. After 11 iterations, constraint satisfaction on the validation set stabilizes and we

use the held-out test set to assess the performance of our models.

We train four generative models corresponding to λ ∈ {256,64,16,4}. In each iteration, the

generator predicts solutions to the corresponding barrier problem, meaning that training over a

range of λ ensures that in every iteration, the oracle labels and augments the data sets with

predictions lying in a diverse set of areas in and around the feasible set. Similarly, we train each

baseline model for 200 epochs (approximately 24 hours). This is roughly the same duration of time

required to train 11 iterations of IPMAN, thus maintaining a fair comparison. The data generation,

implementation, and training details are provided in EC.3.3. Below, we highlight the initialization

steps and refinements to the IPMAN algorithm made for our computational experiments.

6.2.1. Pre-training to initial feasible decisions. Classical IPMs generally require an initial

point x(0) that is strictly feasible. Analogously in IPMAN, ensuring that F (u) is initialized at a

stage where it usually predicts feasible decisions implies that the training loss is not extremely

high at early stages and helps to stabilize training. Thus, before starting the IPMAN algorithm,

we pre-train F (u) as the generator in a GAN and save the weights.
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Table 1 The percentage of predicted decisions on the held-out test set that satisfy each hidden constraint to 1

Gy relaxation. The best performing models on the summary statistics are highlighted.

Structure Criteria (Gy) Baselines IPMAN (λ)

GAN CNN 256 64 16 4

Right Parotid zo ≤ 26 85.7 85.7 86.2 90.0 93.3 100
Left Parotid zo ≤ 26 70.0 60.0 70.0 90.0 90.0 100
Larynx zo ≤ 45 93.3 83.3 89.7 89.7 93.3 100
Mandible zmax

o ≤ 73.5 100 100 100 100 100 100
PTV70 z90

t ≥ 70 97.6 97.6 97.6 97.6 95.2 92.8
PTV63 z90

t ≥ 63 96.3 96.3 96.3 96.3 96.3 96.3
PTV56 z90

t ≥ 56 100 100 100 100 100 100

All hidden constraints 86.0 78.0 82.0 88.0 88.0 94.0

All polyhedral constraints 92.0 90.0 94.0 92.0 90.0 94.0

Objective function value 40.3 41.0 41.0 41.0 40.0 37.8

6.2.2. Generating an initial D̄. Before training the classifier in the first iteration of IPMAN,

we require an initial data set of infeasible decisions D̄. During the pre-training stage, the generator

of the GAN creates a set of candidate decisions. We label the generated decisions and assign them

to the appropriate sets D and D̄ in order to initialize IPMAN with an augmented data set.

6.2.3. Learning multi-label feasibility. A feasible dose distribution must satisfy multiple

polyhedral and hidden constraints corresponding to different PTVs and OARs. Learning to classify

a decision as feasible is challenging due to the granularity of constraint satisfaction and the variety

of constraints that are present. Consequently, we separate the classification problem into one for

each of the four OARs and three PTVs of the patient. That is, for each structure of interest, we

train a separate classifier. The δ-barrier optimization problem is then the sum of the different

classifier outputs; this is equivalent to the classical barrier problem. That is, let Br(x,u) be a

classifier for r ∈R that assesses whether the polyhedral and hidden constraints for that structure

are satisfied. Then, the barrier problem is minx{f(x)−λ∑r∈RBr(x,u)}.

6.3. Learning to predict feasible and optimal dose distributions

In practice, oncologists evaluate plans by assessing how many of the institutionally mandated

clinical criteria are satisfied and to what degree. We use a set of clinical criteria (see column 2 of

Table 1) to evaluate our models. As the relevancy of criteria (i.e., feasibility) for each patient is

determined by an oncologist, we evaluate plans by first identifying the hidden constraints satisfied

by the ground truth dose distribution. If the clinical dose satisfies a given criterion, we then evaluate

whether the predicted dose also satisfies that criterion. Satisfaction is defined as meeting the

dose bound to within a 1 Gy relaxation. In the clinical literature, dose predictions are commonly
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(a) Objective function and fraction of feasible plans with respect to the hidden and polyhedral constraints.
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(b) Average difference from the hidden constraint bound ẑr(u). The dashed line is 0 Gy. Above 0 suggests plans satisfy

the constraints on average.

Figure 3 Statistics on the validation set obtained during training on criteria from our institution.

evaluated on a voxel-level to within 3% of the maximum prescribed dose, i.e., 2.1 Gy for our

problem (Low et al. 1998). In our analysis, we consider constraints rather than direct voxels and

tighten the tolerance to 1 Gy. The relaxation can also be interpreted as the δ for a δ-barrier; if all

decisions satisfy a given constraint, the the corresponding classifier is a δ-barrier with δ= 1 Gy.

Figure 3(a) displays the average objective function value and the fraction of plans that satisfy the

hidden and polyhedral constraints over training iterations. We find that in training, the objective

function value improves as a function of the number of iterations, while hidden constraint satisfac-

tion also increases. For example, in the first iteration, 89% of predictions in the validation set satisfy

all of their hidden constraints, whereas this fraction increases to 97% by iteration 11. Polyhedral

constraint satisfaction also increases from 88% to 95%. This suggests that the IPMAN algorithm

trains the model to generate fewer infeasible doses. In other words, the classifier is learning to

produce a tighter characterization of the feasible set (see Proposition 1).

Figure 3(b) shows the average difference from the boundary of the hidden constraint for each

structure. If the difference is positive, doses on average satisfy the hidden criteria. We observe
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two important phenomena. First, the four leftmost plots are associated with OAR constraints. By

minimizing the objective, the associated OAR constraints see progressively better adherence as

expected. Note that the Mandible and PTV70 structures often overlap, meaning their constraints

conflict with each other, preventing improvement for this organ. Second, the PTV constraints show

small but sustained improvement as the number of training iterations increase. This is because

they are solely associated with feasibility and are not part of the objective function. In particular,

the PTV70 constraint is typically the hardest to satisfy in practice; IPMAN learns this difficulty

and makes predictions that lie close to the boundary of the feasible set.

Table 1 shows performance on the held-out test set for IPMAN at iteration 11 against the

baseline models. In general, IPMAN models with λ ≤ 64 satisfy the hidden constraints better

than the baselines. IPMAN with λ = 4 dominates all other models, including the baselines, in

hidden and polyhedral constraint satisfaction, as well as objective function value. That is, this

model predicts dose distributions that deliver lower dose to healthy tissue while better satisfying

the clinical criteria. We conclude that training via IPMAN yields prediction models that produce

feasible decisions more often and with a lower objective function value than existing state-of-the-art

methods. We also observe that with higher values of λ, constraint satisfaction comes with a price;

the objective function value is higher.

Recall that optimal solutions to the barrier problem satisfy a (δ, ε)-optimality guarantee. At

high λ, this translates to a non-trivial upper bound with respect to the optimal value of the true

problem, while at low λ, the guarantee translates to a non-trivial lower bound (see Theorem 1 and

also EC.1). Because the generator learns via empirical risk minimization of the barrier problem,

the corresponding predictions should also satisfy similar upper and lower bounds (see Theorem 2

and 3). While we may consequently expect setting a low λ to yield predictions that are infeasible

(i.e., satisfying a non-trivial lower bound with respect to the optimal value), we find that λ = 4

yields the best performance on out-of-sample data. In the next experiment, where the data is not

perfectly indicative of the constraints, we observe the benefits of using a higher λ value to predict

decisions that are more likely to be feasible.

6.4. Adapting to the clinical constraints of a different institution

The previous experiments were constructed using the clinical criteria from one institution under

which the ground truth plans were developed. However, different clinics often use different crite-

ria (Wu et al. 2017). Further, small clinics may have limited patient volume which may not be

sufficient to properly train institution-specific models using existing methods (Boutilier et al. 2016).

In this experiment, we show how IPMAN can be trained using the original data set to learn to

predict feasible and optimal treatments for new clinical constraints.
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(a) Objective function and fraction of feasible plans with respect to the hidden and polyhedral constraints.
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(b) Average difference from the hidden constraint bound ẑr(u). The dashed line is 0 Gy. Above 0 suggests plans satisfy

the constraints on average. λ= 4 is omitted to preserve scale.

Figure 4 Statistics on the validation set obtained during training on criteria from Geretschläger et al. (2015).

We use clinical criteria obtained from Geretschläger et al. (2015) who pursue a more aggressive

treatment policy for head-and-neck cancer. They prescribe tumors to receive 72 Gy, 66 Gy, and 54

Gy to their three target sites, respectively, which we re-label in our data sets as PTV72, PTV66, and

PTV54. Note that relative to the previous criteria in Section 6.3, two of the criteria have become

stricter while the third is now easier to satisfy. Although we do not know the exact preferences of

oncologists in determining when a criteria is necessary, we assume that any patient in our data set

who was prescribed dose that satisfied the PTV hidden lower bound constraint from our institution

would be prescribed dose at the corresponding new level at this new institution.

We train the generator and classifier using IPMAN for 11 iterations using the same settings as

the previous section with one difference: we omit the l1 regularization term. While regularization

can be useful to ensure that predictions are not vastly different from clinical data (see EC.3.3.4

for details), in this experiment, the clinical doses tend to be infeasible under the new criteria

because they were generated using criteria from the original institution. For example, no plans in

our data set received more than 72 Gy of dose to PTV70. Including the l1 term would, therefore,
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Table 2 The percentage of predicted decisions on the held-out test set that satisfy each hidden constraint

of Geretschläger et al. (2015) to 1 Gy relaxation. The best performing models on the summary statistics are

highlighted.

Structure Criteria (Gy) Baseline IPMAN (λ)

GAN 256 64 16 4

Right Parotid zo ≤ 26 83.3 85.7 85.7 100 100
Left Parotid zo ≤ 26 70.0 50.0 60.0 100 100
Larynx zo ≤ 45 93.3 86.7 76.8 100 100
Mandible zmax

o ≤ 73.5 100 81.0 90.5 100 100
PTV72 z90

t ≥ 72 7.31 95.2 95.2 14.3 0
PTV66 z90

t ≥ 66 77.8 96.3 96.3 85.2 0
PTV54 z90

t ≥ 54 100 100 100 96.0 0

All hidden constraints 18.3 64.0 66.0 26.0 0

All polyhedral constraints 93.8 94.0 90.0 88.0 0

Objective function value 40.3 42.3 42.3 34.3 10.0

inappropriately guide the model to generate doses that tried to match the old criteria, rather than

learn the new criteria.

Figure 4(a) displays the objective function value and the fraction of plans that satisfied the hidden

and polyhedral constraints. The models trained for λ ≤ 16 decrease in objective function value

and constraint satisfaction as the algorithm progresses. In the early stages, the classifier (which is

initially trained mainly using the clinical data and doses sampled from the same distribution) has

not yet observed a sufficient and diverse number of feasible plans. Therefore, the classifier is not

yet a sufficient δ-barrier, allowing the generator to leave the feasible set.

Generally at high λ, optimal solutions to the barrier problem are less aggressive in terms of

minimizing the objective and instead lie well in the interior of the feasible set (see EC.1). As the

classifier improves, particularly after iteration 6, the generative models for λ≥ 64 quickly learn to

predict solutions that are more likely to satisfy the hidden constraints. In particular, the distance

from the PTV72 boundary in Figure 4(b) begins to increase from the 6th iteration and passes 0

(i.e., satisfy the hidden constraint) by the 10th iteration. This result demonstrates that our model

is learning a new constraint, the PTV72 hidden criteria, which cannot be learned by naively using

the training data. Recall that no clinical dose in the original data set reached 72 Gy on the PTV70.

Thus, learning the PTV72 constraint is entirely attributable to the IPMAN procedure.

Table 2 shows the performance on the held-out test set for the generator at iteration 11. The

baseline for comparison is the previous GAN which was trained on data from the original institution.

Since no new data exists, the GAN cannot be re-trained to recognize the updated clinical criteria.

As a result, few plans (18.3%) produced by the GAN satisfy the hidden constraints with only 77.8%
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and 7.31% of the PTV66 and PTV72 criteria being satisfied, respectively. In contrast, IPMAN

is able to learn the new hidden constraints. Overall, hidden constraint satisfaction is 64.0% with

96.3% and 95.2% of plans satisfy the PTV66 and PTV72, constraints, respectively with λ= 256 or

64. Nevertheless, as a result of learning higher doses to the PTVs, constraint satisfaction on the

OARs slightly degrades, which is noted in the slightly higher objective function values.

7. Conclusion

Conventional optimization techniques generally require well-structured problem formulations and

make limited account of auxiliary data present in problems where different instances must be reg-

ularly solved. We propose Interior Point Methods with Adversarial Networks, a learning-based

approach for generating solutions to optimization problems whose feasible sets are determined by

instance-specific auxiliary information. We develop an unconstrained barrier problem where the

barrier is replaced by a classifier trained on historical instances to predict feasibility. Because a

classifier is not perfectly accurate, we extend the theory of interior point methods to the set-

ting where only a relaxation of the feasible set is known and develop a corresponding optimality

guarantee. Our main algorithm iteratively trains the classifier as well as a generative model via

empirical risk minimization of the barrier problem. We demonstrate that the classifier learns to

better approximate an effective barrier and the generative model learns to predict solutions with

an optimality guarantee for both in-sample and out-of-sample instances. Ultimately, we obtain

a deep learning model that can predict optimal solutions to problems in a fraction of the time

that it would take a conventional optimization solver. Furthermore, our predictions account for

instance-specific variations in the feasible set that conventional optimization would fail to permit.

To illustrate the application of our algorithm, we use it to predict dose distributions for radiation

therapy as part of an automated planning pipeline. We find that our method learns to predict doses

that better satisfy hidden clinical constraints and minimize objective function values as compared

to state-of-the-art baseline learning methods. Furthermore, we show that our approach is adaptable

in learning clinical criteria that are different from those that were used to generate the ground

truth doses. This result suggests that an institution without a sufficient data set for training a dose

prediction model could apply our methodology using data from another clinic; our approach would

learn to produce appropriate doses tailored to the unique clinical criteria of the new institution

while ensuring all solutions are certifiably optimal. As the global demand for radiation therapy

grows and new clinics open in rural and developing areas, such adaptable automated planning

methodologies have the potential to close the supply-demand gap in treatment planning capacity.
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Electronic Companion

EC.1. Structural properties of (δ, ε)-optimality for the barrier problem

The IPMAN algorithm simultaneously trains a classifier and a generative model to learn feasibility

and predictive optimal solutions respectively. Alternatively, if we are already given a δ-barrier

Bδ(x,u), we may consider directly optimizing BP(u,Bδ, λ). In this section, we show how tuning

the λ parameter can yield feasible or infeasible solutions of different qualities.

Under a mild regularity assumption, for a sufficiently large λ, an optimal solution xλ(u) to

BP(u,Bδ, λ) is guaranteed to lie inside X (u). Once λ is sufficiently small, the optimal solutions

then enter Nδ (X (u))\X (u). We first state this assumption before characterizing the trajectory of

the sequence of points obtained via an IPM.

Assumption EC.1 (Regularity of the δ-barrier).

1. There exist x̃∈ int(X (u)) such that Bδ(x̃,u)>Bδ(x,u) for all x∈ cl(Nδ (X (u)) \X (u)).

2. There exist x̃′ ∈Nδ (X (u)) \X (u) such that f(x̃′)< f(x∗(u)) and 0<Bδ(x̃
′,u)<Bδ(x,u) for

all x∈X (u).

The first statement implies that there exists a point inside X (u) for which Bδ(x,u) is greater

than any point outside of X (u). Similarly, the second statement implies that there exists a point

outside of X (u) for which Bδ(x,u) is lower than any point inside X (u). Intuitively, the barrier

yields higher values for points inside X (u) rather than outside. Furthermore, the existence of x̃′ for

which f(x̃)> f(x∗(u))> f(x̃′) is a direct consequence of the linear objective. Figure EC.1 shows

an example of such points for a feasible set where the δ-barrier is a canonical barrier for P. Given

a barrier function satisfying Assumption EC.1, λ controls the feasibility of xλ(u) for OP(u).

Lemma EC.1. If Assumption EC.1 is satisfied, then there exists λ̃ such that for all λ≥ λ̃, the

optimal solution to BP(u,Bδ, λ) is feasible for OP(u), i.e., xλ(u)∈X (u).

Proof of Lemma EC.1. Let x+ ∈ arg supx {Bδ(x,u) | x∈Nδ (X (u)) \X (u)} and x− ∈
arg infx {f(x) |Bδ(x,u)> 0}. Then, for x̃ satisfying Assumption EC.1 Statement 1, we set

λ̃=
f(x̃)− f(x−)

logBδ(x̃,u)− logBδ(x+,u)
. (EC.1)

From the optimality of x−, we have f(x̃)> f(x−). Then, Assumption EC.1 implies that the denom-

inator is positive, and therefore λ̃ > 0. Rearranging (EC.1) yields

f(x̃)− λ̃ logBδ(x̃,u) = f(x−)− λ̃ logBδ(x
+,u).

By optimality of x+ and x−, we have f(x)≥ f(x−) and logBδ(x,u)≤ logBδ(x
+,u) respectively,

for all x ∈ Nδ (X (u)) \ X (u). Therefore, f(x̃) − λ̃ logBδ(x̃,u) ≤ f(x) − λ̃ logBδ(x,u) for all x ∈
Nδ (X (u))\X (u), concluding that the optimal solution to BP(u,Bδ, λ̃) must satisfy xλ̃(u)∈X (u).
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Now for any ε > 0, observe that

f(x̃)− (λ̃+ ε) logBδ(x̃,u)≤ f(x)− λ̃ logBδ(x,u)− ε logBδ(x̃,u), ∀x∈Nδ (X (u)) \X (u)

< f(x)− λ̃ logBδ(x,u)− ε logBδ(x,u), ∀x∈Nδ (X (u)) \X (u).

The first line is obtained by adding ε logBδ(x̃,u) to both sides, and the second from Bδ(x̃,u)>

Bδ(x,u) for x∈Nδ (X (u)) \X (u). Thus, BP(u,Bδ, λ̃+ ε) yields feasible solutions to OP(u). �

Lemma EC.2. If Assumption EC.1 is satisfied, then there exists λ̃′ such that for all λ≤ λ̃′, the

optimal solution to BP(u,Bδ, λ) is infeasible for OP(u), i.e., xλ(u)∈Nδ (X (u)) \X (u).

Proof of Lemma EC.2. Let x† ∈ arg maxx {Bδ(x,u) | x∈X (u)}. Then, for x̃′ satisfying

Assumption EC.1 Statement 2, let

λ̃′ =
f (x∗(u))− f(x̃′)

logBδ(x†,u)− logBδ(x̃′,u)
. (EC.2)

Assumption EC.1 Statement 2 ensures f(x∗(u)) > f(x̃′) and logBδ(x
†,u) > logBδ(x̃

′,u). There-

fore, λ̃′ > 0. Rearranging (EC.2) gives us

f(x̃′)− λ̃′ logBδ(x̃
′,u) = f (x∗(u))− λ̃′ logBδ(x

†,u).

By optimality of x∗(u) and x†, we have f(x) ≥ f(x∗(u)) and logBδ(x,u) ≤ logBδ(x
†,u) respec-

tively, for all x ∈ X (u). Therefore f(x̃′)− λ̃′ logBδ(x̃
′,u)≤ f(x)− λ̃′ logBδ(x,u) for all x ∈ X (u),

concluding that the optimal solution to BP(u,Bδ, λ̃
′) must satisfy xλ̃

′
(u)∈Nδ (X (u)) \X (u).

Now for any ε > 0, observe that

f(x̃′)− (λ̃′− ε) logBδ(x̃
′,u)≤ f(x)− λ̃′ logBδ(x,u) + ε logBδ(x̃

′,u), ∀x∈X (u)

< f(x)− λ̃′ logBδ(x,u) + ε logBδ(x,u), ∀x∈X (u).

The first line is obtained by subtracting ε logBδ(x̃
′,u) to both sides, and the second fromBδ(x̃

′,u)<

Bδ(x,u) for all x∈X (u). Thus, BP(u,Bδ, λ̃
′− ε) yields infeasible solutions to OP(u). �

Lemma EC.2 and the second statement of Assumption EC.1 give the condition where the barrier

problem produces undesirable results. Otherwise, if f(x̃′)> f(x∗(u)) and Bδ(x̃
′,u)≥Bδ(x,u) for

all x̃′ ∈Nδ (X (u)) \X (u) and x∈X (u), OP(u) could be solved by classical IPMs.

Lemmas EC.1 and EC.2 state that when λ is set sufficiently high (or low), the corresponding

optimal solution xλ(u) is a certifiably feasible (or infeasible) solution to OP(u). Furthermore,

there exists a trajectory, i.e., feasibility (or infeasibility) is guaranteed for all λ sufficiently high

(or low). Assuming access to an oracle Ψ(x,u), we con construct a simple IPM to obtain optimal

solutions to OP(u). We initialize with a large λ0 that satisfies Lemma EC.1. We define a decay
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f(x)

x∗(u)

x̃

x̃′

P

X (u)

Figure EC.1 The dotted lines are level sets. x∗(u) is optimal for OP(u) while x̃ and x̃′ satisfy Lemmas EC.1

and EC.2 respectively.

rate ν < 1 and a number of iterations j ∈ 0, . . . ,M . Then, for each j, we simply let λj = λ0ν
j and

solve BP(u,Bδ, λj) to obtain a new (δ, ε)-optimal solution in each iteration. At the end of each

iteration, the oracle checks if the solution is still feasible, and terminates when the solution exits

the feasible set. We prove the structure of this approach below.

Proposition EC.1. Suppose that x̃1, x̃2 ∈ X (u) and x̃′1, x̃
′
2 ∈ Nδ (X (u)) \ X (u) satisfy State-

ments 1 and 2 of Assumption EC.1, respectively. Assume without loss of generality Bδ(x̃1,u) >

Bδ(x̃2,u) and f(x̃′1) > f(x̃′2). Let xP ∈ arg minx {f(x) | x∈P}. For M > 0 and j ∈ {0, . . . ,M},
consider

λ0 =
f(x̃1)− f(xP)

logBδ(x̃1,u)− logBδ(x̃2,u)
, ν =

(
f(x̃′1)− f(x̃′2)

−λ0 logBδ(x̃′1,u)

)1/M

, λj = λ0ν
j

Then, the following statements are true:

1. An optimal solution xλ0(u) to BP(u,Bδ, λ0) is a feasible solution for OP(u).

2. There exists 1≤ j∗ ≤M such that for all j < j∗, an optimal solution xλj (u) to BP(u,Bδ, λj)

is feasible for OP(u) and for all j ≥ j∗, xλj (u) is infeasible for OP(u).

3. For any j < j∗, an optimal solution xλj (u) is (0, εj)-optimal for OP(u) where

εj = (f(x̃′1)− f(x̃′2))νj−M .

Furthermore for any j ≥ j∗, xλj (u) is (∆(u), εj)-optimal for OP(u).

Proof of Proposition EC.1. We first make several observations about the parameters. Note that

because X (u)⊂P relaxes the feasible set, we have f(xP)≤ f(x∗(u)). Next for all j ≤M , λj = λ0ν
j

and specifically λM = λ0ν
M =−(f(x̃′1)− f(x̃′2))/ logBδ(x̃

′
1,u).
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To prove the first statement, we show that λ0 > λ̃ where λ̃ is defined as in (EC.1) and constructed

using x̃1. Note that f(xP) ≤ f(x−) and by Assumption EC.1, logBδ(x̃2,u) > logBδ(x
+,u). We

substitute f(xP) and logBδ(x̃2,u) in λ0 and prove λ0 > λ̃. By Lemma EC.1, Statement 1 must

hold.

We use a similar argument to show λM < λ̃′ as defined in (EC.2) using x̃′1. By Lemma EC.2,

an optimal solution xλM must be infeasible for OP(u). Given that λj decreases every iteration

and using the first statement, there must exist a cutoff point 1≤ j∗ ≤M for which λj∗ < λ̃′ and

λj∗−1 ≥ λ̃′. Therefore, Statement 2 must also hold.

In order to prove the third statement, recall that we assume δ ≤∆(u) for all j. We first prove

(∆(u), εj)-optimality when j =M , and then prove for j <M . Let εM = f(x̃′1)− f(x̃′2). Note that

λM =
f(x̃′1)− f(x̃′2)

− logBδ(x̃′1,u)
=

εM
− logBδ(x̃′1,u)

<
εM

− logBδ(x∗,u)
.

The second equality follows from substituting the value of εM and the inequality from Bδ(x̃
′
1,u)<

Bδ(x
∗(u),u) (i.e., Assumption EC.1). We next show that xλM satisfies (∆(u), εM)-optimality,

f (x∗(u)) + εM > f (x∗(u))−λM logBδ (x∗(u),u)

≥ f(xλM (u))−λM logBδ
(
xλM (u),u

)
> f

(
xλM (u)

)
.

The first line follows from substituting the value of εM and the second from the optimality of

xλM (u) for BP(u,Bδ, λM). The third line follows from the fact that −λM logBδ(x
λM (u),u)> 0.

For each j < M , we have λj = λMν
j−M . Then, we write εj = (f(x̃′1)− f(x̃′2))νj−M . The same

steps used for the j = M case are repeated to obtain (∆(u), εj)-optimality certificates. Finally,

note that from Statement 2, for all j < j∗, the optimal solutions xλj (u) are feasible for OP(u). By

optimality of x∗(u) for OP(u), we have δ= 0 for all j < j∗. �

Proposition EC.1 first provides parameters λ0 > λ̃ and λM < λ̃′ for which the optimal solutions to

BP(u,Bδ, λ0) and BP(u,Bδ, λM) lie inside and outside of X (u), respectively. Next, it shows that

the sequence of λj produces a sequence of optimal solutions {xλj (u)} that start within the feasible

set X (u) and proceed to move outside. Finally, it derives a sequence of corresponding {εj} such

that the sequence of solutions are (∆(u), εj)-optimal for OP(u). This implies the final solution is

(0, (f(x̃′1)− f(x̃′2)νj
∗−1−M))-optimal for OP(u).

The above proposition summarizes an IPM for solving OP(u) when given a δ-barrier and Ψ(x,u).

The IPM behaves in a desirable and predictable fashion; by initializing with large λ, we ensure

that we obtain feasible solutions, but by decreasing λ, we know that the solution will ultimately be

infeasible. An oracle could identify the point of termination immediately before the IPM leaves the

feasible set. We can from here obtain a tight bound on the (δ, ε)-optimality of the final solution.
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While direct optimization is desirable for its structural properties, this IPM approach is reliant

on access to a δ-barrier. On the other hand, IPMAN learns a classifier that approximates a δ-barrier

after several iterations. Therefore, unless we are given an a priori δ-barrier (e.g., a canonical barrier

for P), this IPM approach is not necessarily feasible from the onset. A potential fix would be to

first train IPMAN until a δ-barrier is obtained and then use the δ-barrier IPM to solve subsequent

problems. This ties to the second difference between the two approaches; IPMAN is ultimately a

predictive model and is therefore subject to prediction error. On the other hand, prediction from

a trained model is much faster than direct optimization. Therefore, in cases where the problem

is large and an IPM would be difficult to solve or require numerous queries from an oracle, the

predictive power of IPMAN yields more practical benefits.

EC.2. Proof of the generalization bound (Theorem 3)

The proof of the generalization bound uses a Generalization Lemma of Bertsimas and Kallus (2019)

to bound the error in objective function value of F ∗(u) versus xλ(u) and Markov’s inequality to

translate this bound to a probabilistic (δ, ε)-optimality certificate. However, in order to use the

lemma in this way, we first require an auxiliary result to relate F ∗ with RNu(F).

Assumption 2 states that the generative model F ∗ is a composition; we project the optimal

solution F (k) of GBP(Û ,Bδ, λ) to P whenever F (k)(u) /∈ P. Although F (k) ∈ F , the final model

F ∗(u) := proj(F (u)) = arg minx{‖x−F (u)‖ | x ∈ P} is not a member of F . We first bound the

Rademacher complexity of models composed from projection below.

Lemma EC.3. Let F = {F : U → Rn} be a model class and proj(F) = {proj(F ) | F ∈ F}
be the class of models composed by a projection to a polyhedron P. Then for any Û ∼ Pu,

R̂Nu(proj(F), Û)≤
√

2nR̂Nu(F , Û).

Proof of Lemma EC.3. We want to show for any fixed Û that

Eσ∼pσ

[
2

Nu

sup
F∈F

Nu∑
i=1

σT
i proj

(
F (ûi)

)]
≤
√

2nEσ∼pσ

[
2

Nu

sup
F∈F

Nu∑
i=1

σT
i F (ûi)

]
. (EC.3)

By conditioning and iterating, it suffices to prove the following inequality for any function Ξ(F ) :

F →R,

Eσ∼pσ

[
sup
F∈F

σTproj(F ) + Ξ(F )

]
≤Eσ∼pσ

[
sup
F∈F

√
2nσTF + Ξ(F )

]
. (EC.4)

We first prove inequality (EC.4), before returning to the main lemma.

As σ ∼ pσ is a random vector of i.i.d. Rademacher variables, it is supported over the (ordered)

set {(−1, . . . ,−1,−1), (−1, . . . ,−1,1), . . . , (1, . . . ,1,1)} all with equal probability. Let σ̂` denote the
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`-th element of this set. By iterating over all values, we expand the left-hand-side of (EC.4) out

to:

Eσ∼pσ

[
sup
F∈F

σTproj(F ) + Ξ(F )

]
=

1

2n

2n∑
`=1

(
sup
F∈F

σ̂T
` proj(F ) + Ξ(F )

)
(EC.5)

=
1

2n

2n−1∑
`=1

(
sup
F∈F

{
σ̂T
` proj(F ) + Ξ(F )

}
+ sup
F∈F

{
−σ̂T

` proj(F ) + Ξ(F )
})

(EC.6)

=
1

2n

2n−1∑
`=1

(
sup

F1,F2∈F
σ̂T
` (proj(F1)−proj(F2)) + Ξ(F1) + Ξ(F2)

)
.

(EC.7)

Equation (EC.5) follows by letting σ̂` iterate over the support of the distribution. Equation (EC.6)

follows from the symmetry of the Rademacher distribution. That is, for every σ̂`, there exists −σ̂`
with equal probability, and we need to only characterize half of the elements in the support. (EC.7)

merges the suprema.

By the Obtuse Angle Criterion, projection to a convex set is a non-expansive operation

(i.e., ‖proj(F1)−proj(F2)‖ ≤ ‖F1−F2‖). We use the Cauchy-Schwarz inequality and the non-

expansiveness property (in (EC.8) and (EC.9) below, respectively) to remove the dependency on

the projection operator:

RHS (EC.7)≤ 1

2n

2n−1∑
`=1

(
sup

F1,F2∈F
‖σ̂`‖‖proj(F1)−proj(F2)‖+ Ξ(F1) + Ξ(F2)

)
(EC.8)

≤ 1

2n

2n−1∑
`=1

(
sup

F1,F2∈F
‖σ̂`‖‖F1−F2‖+ Ξ(F1) + Ξ(F2)

)
(EC.9)

≤ 1

2n

2n−1∑
`=1

(
sup

F1,F2∈F

√
n‖F1−F2‖+ Ξ(F1) + Ξ(F2)

)
(EC.10)

≤ 1

2

(
sup

F1,F2∈F

√
n‖F1−F2‖+ Ξ(F1) + Ξ(F2)

)
(EC.11)

≤ 1

2

(√
n‖F ∗1 −F ∗2 ‖+ Ξ(F ∗1 ) + Ξ(F ∗2 )

)
. (EC.12)

Inequality (EC.10) follows by noting ‖σ‖ ≤√n for all σ ∼ pσ and (EC.11) from the fact that the

dependency on σ̂` has been removed. We obtain (EC.12) by letting F ∗1 and F ∗2 be the two values

that attain the supremum.

Finally, we use the Khintchine inequality to bound ‖F ∗1 −F ∗2 ‖ ≤
√

2Eσ∼pσ
[∣∣σT(F ∗1 −F ∗2 )

∣∣]. We

then rearrange the terms as follows:

RHS (EC.12)≤ 1

2

(√
2nEσ∼pσ

[∣∣σT(F ∗1 −F ∗2 )
∣∣]+ Ξ(F ∗1 ) + Ξ(F ∗2 )

)
(EC.13)
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=
1

2

(
Eσ∼pσ

[√
2n
∣∣σT(F ∗1 −F ∗2 )

∣∣+ Ξ(F ∗1 ) + Ξ(F ∗2 )
])

(EC.14)

≤ 1

2

(
Eσ∼pσ

[
sup

F1,F2∈F

√
2n
∣∣σT(F1−F2)

∣∣+ Ξ(F1) + Ξ(F2)

])
(EC.15)

=
1

2

(
Eσ∼pσ

[
sup
F∈F

{√
2nσTF + Ξ(F )

}
+ sup
F∈F

{
−
√

2nσTF + Ξ(F )
}])

(EC.16)

=Eσ∼pσ

[
sup
F∈F

√
2nσTF + Ξ(F )

]
. (EC.17)

Inequality (EC.14) brings all of the terms inside the expectation. (EC.15) upper bounds by the

supremum. Because Ξ(F1)+Ξ(F2) is invariant under the exchange of F1 and F2, the supremum will

be obtained when σT(F1−F2) is positive, meaning we can remove the absolute value and separate

the supremum in (EC.16). Finally, the symmetry of the random variable σ implies that the two

suprema are equal, thereby giving (EC.17).

To complete the proof, we use a standard conditioning argument (see Maurer (2016)) to

show (EC.3) decomposes to (EC.4). For any 0≤m≤Nu, we prove the following by induction:

Eσ∼pσ

[
sup
F∈F

Nu∑
i=1

σT
i proj

(
F (ûi)

)]
≤Eσ∼pσ

[
sup
F∈F

m∑
i=1

√
2nσT

i F (ûi) +

Nu∑
i=m+1

σT
i proj

(
F (ûi)

)]
.

The case for m= 0 is an identity. Now for fixed values of σ̂i,∀i 6=m, let

Ξ(F ) =
m−1∑
i=1

√
2nσ̂T

i F (ûi) +

Nu∑
i=m+1

σ̂T
i proj

(
F (ûi)

)
.

Then, assuming the inequality holds for m− 1, we show

Eσ∼pσ

[
sup
F∈F

Nu∑
i=1

σT
i proj

(
F (ûi)

)]
≤Eσ∼pσ

[
sup
F∈F

m−1∑
i=1

√
2nσT

i F (ûi) +

Nu∑
i=m

σT
i proj

(
F (ûi)

)]

=Eσ∼pσ

[
Eσm∼pσ

[
sup
F∈F

σT
mproj

(
F (ûm)

)
+ Ξ(F )

∣∣∣∣ {σ̂i,∀i 6=m}
]]

≤Eσ∼pσ

[
Eσm∼pσ

[
sup
F∈F

√
2nσT

mF (ûm) + Ξ(F )

∣∣∣∣ {σ̂i,∀i 6=m}
]]

=Eσ∼pσ

[
sup
F∈F

m∑
i=1

√
2nσT

i F (ûi) +

Nu∑
i=m+1

σT
i proj

(
F (ûi)

)]
.

The second inequality comes from substituting (EC.4). When m=Nu, the proof is complete. �

Lemma EC.3 can be seen as an extension of the main theorem of Maurer (2016) and is proved

using a similar sequence of steps. There, the authors showed that composition of a Lipschitz scalar-

valued vector function onto a vector-valued model class bounds the Rademacher complexity of the

composed class by
√

2L. In the above, we compose the projection operator, a vector-valued function,

to the vector-valued model class and bound the Rademacher complexity by
√

2n. Although we
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only specifically consider the projection operator, the proof easily extends to any vector-valued

function, so long as it is L-Lipschitz, whereupon we would reintroduce L back into the bound.

Before proving Theorem 3, we re-state the Generalization Lemma of Bertsimas and Kallus (2019).

Lemma EC.4 (Bertsimas and Kallus (2019)). Consider a function z(x,u) :P×U →R that

is bounded and L∞-Lipschitz continuous in x using the ‖·‖∞ norm,

sup
x∈P,u∈U

z(x,u)≤K, sup
x1 6=x2∈P,u∈U

z(x1,u)− z(x2,u)

‖x1−x2‖∞
≤L∞.

For any β > 0, with probability at least 1−β with respect to the sampling of Û ,

Eu∼Pu

[
z
(
F (u),u

)]
≤ 1

Nu

Nu∑
i=1

z
(
F (ûi), ûi

)
+K

√
log(1/β)

2Nu

+L∞RNu

(
proj(F)

)
, ∀F ∈ proj(F).

We are now ready to prove Theorem 3.

Proof of Theorem 3. The proof follows by first applying Lemma EC.4, before applying Markov’s

inequality. We let z(x,u) = |f(x)− f(xλ(u))|, as a function of x ∈ P and u ∈ U , and show it is

bounded from above

sup
x∈P,u∈U

z(x,u) = sup
x∈P,u∈U

∣∣f(x)− f(xλ(u))
∣∣ (EC.18)

≤max
x∈P

f(x)−min
x∈P

f(x) =K. (EC.19)

Because P is a closed and bounded set and f(x) is linear, (EC.19) is bounded. We define K to be

equal to RHS (EC.19).

We next show L∞-Lipschitz continuity,

sup
x1 6=x2∈P,u∈U

z(x1,u)− z(x2,u)

‖x1−x2‖∞
= sup

x1 6=x2∈P,u∈U

∣∣f(x1)− f(xλ(u))
∣∣− ∣∣f(x2)− f(xλ(u))

∣∣
‖x1−x2‖∞

(EC.20)

≤ sup
x1 6=x2∈P,u∈U

∣∣f(x1)− f(xλ(u))− f(x2) + f(xλ(u))
∣∣

‖x1−x2‖∞
(EC.21)

= sup
x1 6=x2∈P

|f(x1)− f(x2)|
‖x1−x2‖∞

=L∞ (EC.22)

Inequality (EC.21) follows from the Reverse Triangle Inequality. (EC.22) follows from the fact that

f(x) is linear and therefore, Lipschitz continuous using the ‖·‖∞ norm. We let L∞ be the Lipschitz

constant of f(x).

Because z(x,u) satisfies the bounded and Lipschitz continuity assumptions, we apply

Lemma EC.4 to obtain

Eu∼Pu

[
z
(
F (u),u

)]
≤ 1

Nu

Nu∑
i=1

z
(
F (ûi), ûi

)
+K

√
log(1/β)

2Nu

+L∞RNu

(
proj(F)

)
, ∀F ∈ proj(F).
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Specifically, this bound holds for F ∗ ∈ proj(F). By Lemma EC.3, we can bound RNu(proj(F))≤
√

2nRNu(F).

The remainder of the proof follows from Markov’s inequality. For γ > 0,

Pu

{
z
(
F ∗(u),u

)
>γ
}

= Pu

{∣∣f(F ∗(u)
)
− f
(
xλ(u)

)∣∣>γ}
≤

Eu∼Pu

[ ∣∣f(F ∗(ûi))− f(xλ(ûi)
)∣∣ ]

γ
.

From the Law of Total Probability, we obtain

Pu

{∣∣f(F ∗(u)
)
− f
(
xλ(u)

)∣∣≤ γ}= 1−Pu

{∣∣f(F ∗(u)
)
− f
(
xλ(u)

)∣∣>γ}
≥ 1−

Eu∼Pu

[ ∣∣f(F ∗(ûi))− f(xλ(ûi)
)∣∣ ]

γ
,

≥ 1−

1

Nu

Nu∑
i=1

∣∣f(F ∗(ûi))− f(xλ(ûi)
)∣∣+K

√
log(1/β)

2Nu

+
√

2nL∞RNu(F)

γ
,

with probability 1−β. The second and third line follow from Markov’s inequality and substituting

the bound from Lemma EC.4, respectively. Given that we have a probabilistic bound for the error

of F ∗(u) from xλ(u), we bound the error to x∗(u). Recall that f(xλ,u) is (δ, ε)-optimal. There are

two cases to consider. First, if f(xλ(u))≤ f(F (u))≤ f(xλ(u)) + γ, then by substitution,

f
(
F ∗(u)

)
− ε− γ < f

(
x∗(u)

)
< f
(
F ∗(u)

)
+ δL.

Alternatively, if f(F ∗(u))≤ f(xλ(u))≤ f(F ∗(u)) + γ, then by substitution,

f
(
F ∗(u)

)
− ε < f

(
x∗(u)

)
< f
(
F ∗(u)

)
+ δL+ γ.

Note that both of these events can be covered by adding and subtracting γ to both the upper and

lower bounds respectively. Then,

Pu

{
f
(
F ∗(u)

)
− ε− γ < f

(
x∗(u)

)
< f
(
F ∗(u)

)
+ δL+ γ

}
≥ Pu

{∣∣f(F ∗(u)
)
− f
(
xλ(u)

)∣∣≤ γ},
completing the proof. �

EC.3. Implementation details for predicting optimal dose distributions
EC.3.1. Problem formulation

RT treatment is delivered by a linear accelerator (LINAC) that projects high-energy X-rays from

different angles to a patient’s tumor. The patient’s body is discretized into voxels (i.e., 5mm×
5mm× 2mm volumetric pixels) and the dose delivered to each of these voxels is used to assess



e-companion to Babier et al.: Learning to optimize with hidden constraints ec11

the quality of a treatment. The design of an RT treatment plan is typically done by mathematical

optimization where the decision variable has two components (i) beamlet intensity and (ii) dose

delivered (in Gy). Most automated planning systems involve predicting doses that are clinically

desirable for a given patient. In practical implementations, the appropriate beamlets that can recon-

struct a predicted dose distribution can be obtained via a secondary optimization process (Babier

et al. 2018b). In this work, we focus on constructing clinically desirable dose distributions.

Each patient contains seven organs-at-risk (OARs) (i.e., brainstem, spinal cord, right parotid,

left parotid, larynx, esophagus, and mandible) to which we minimize the average dose. Each patient

also contains up to three planning target volumes (PTVs) with different prescription doses (i.e.,

PTV56, PTV63, and PTV70 with 56 Gy, 63 Gy, and 70Gy as prescription doses, respectively). We

remark that constraints to the brainstem, spinal cord, and esophagus are generally easily satisfied

by all predictions. Consequently, we focus specifically on the right parotid, left parotid, larynx,

mandible, PTV56, PTV63, and PTV70.

In the RT optimization problem, each of the OARs and targets require polyhedral upper and

lower bound constraints to the mean dose delivered to that structure. Furthermore, there exists a

hidden “clinical criteria” constraint for each OAR and target that must be satisfied at the discretion

of an oncologist. That is, if the ground truth treatment plan for a given patient from the data

set satisfies a hidden constraint, then any generated plan for that patient must also satisfy that

constraint. The hidden constraint for each OAR is an upper bound on either the mean or maximum

dose delivered to that structure, while the hidden constraint for each target is a lower bound on the

value-at-risk, i.e., minimum dose delivered to 90-th percentile of the target structure. The oracle

Ψ(x,u) is a look-up table that compares the dose generated by our model with the ground truth

(i.e., what was actually delivered). In particular, for each structure, Ψ(x,u) checks whether the

input dose satisfies all the constraints (i.e., two polyhedral and one hidden constraints). We expand

on the classification of feasibility in the sections below.

EC.3.2. Neural network architecture

We use a modified version of the generative adversarial network (GAN) of (Mahmood et al. 2018),

where two networks learn to predict dose distributions. The architectures for F (u) and B(x,u) are

described in Tables EC.1 and EC.2, respectively.

The generator takes as input a tensor u∈R128×128×128×8, where the first three dimensions corre-

spond to a voxel in the patient’s geometry. The fourth dimension is a concatenation of the CT image

greyscale and a one-hot encoded vector in {0,1}7 whose elements label whether the voxel belongs

to one of the seven contoured structures. The generator then outputs a tensor x ∈ R128×128×128

whose elements specify the dose to be delivered to each voxel of the patient.
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Table EC.1 Overview of the generator architecture. BN refers to batch normalization; LR, R, and tanh refer to

Leaky ReLU (0.2 slope), ReLU, and Tanh activations, respectively; AP refers to a mean pool; and D refers to

dropout.

Layer Concatenate with Input shape Block Activation

1 — 128× 128× 128× 8 conv3d BN-LR
2 — 64× 64× 64× 64 conv3d BN-LR
3 — 32× 32× 32× 128 conv3d BN-LR
4 — 16× 16× 16× 256 conv3d BN-LR
5 — 8× 8× 8× 512 conv3d BN-LR
6 — 4× 4× 4× 512 conv3d BN-LR
7 — 2× 2× 2× 512 deconv3d LR
8 layer 5 output 4× 4× 4× 1024 deconv3d BN-R
9 layer 4 output 8× 8× 8× 1024 deconv3d BN-D-R
10 layer 3 output 16× 16× 16× 512 deconv3d BN-D-R
11 layer 2 output 32× 32× 32× 256 deconv3d BN-R
12 layer 1 output 64× 64× 64× 128 deconv3d AP-tanh

Output — 128× 128× 128× 1 — —

Table EC.2 Overview of the classifier architecture. BN refers to batch normalization; LR, R, and sigmoid refer to

Leaky ReLU (0.2 slope), ReLU, and Sigmoid activations.

Layer Input size Block Activation

1 128× 128× 128× 9 conv3d LR
2 64× 64× 64× 64 conv3d BN-LR
3 32× 32× 64× 128 conv3d BN-LR
4 16× 16× 16× 256 conv3d BN-LR
5 8× 8× 8× 512 conv3d sigmoid

Output 7 — —

The classifier is trained to predict whether a given dose distribution satisfies all of the constraints

(both hidden and polyhedral) for each structure of the patient. This network takes as input the

concatenated tensor (x,u) and outputs a vector in [0,1]7, whose elements each indicate the clas-

sifier’s belief of whether the given dose distribution has satisfied all of the constraints for each

specific structure. Consequently, learning feasibility becomes a multi-label classification problem

and the classifier acts as seven separate classifiers each predicting feasibility with respect to an

individual structure, but whose model parameters are shared with each other. For any structure,

in order to classify a dose distribution as satisfying the relevant constraints, the classifier must: (i)

first determine from the dose whether the polyhedral constraints are satisfied, (ii) determine from

the CT image whether the patient requires a hidden constraint to be satisfied, and (iii) determine

from the dose whether the hidden constraint is satisfied if this constraint is required for the patient.

Overall, a dose distribution is feasible only if all constraints are satisfied.

EC.3.3. Implementation of the IPMAN algorithm
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Algorithm 1 Generator pre-training and data augmentation

Input: Feasible and input data sets D= {(x̂i, ûi)}Nu
i=1, Û = {ûi}Nu

i=1, infeasible data set D̄= ∅, Pre-

training number of epochs EST .

Output: Pre-trained generative model F (0,0), Feasible and infeasible data sets D, D̄.

1: Initialize generator and discriminator F,D

2: for e= 1 to EST do

3: Update generator and discriminator F ∗,D∗←Adam(∇LST ).

4: for all ûi ∈ Û do

5: Append D←D∪ (F ∗(ûi), ûi) if Ψ(F ∗(ûi), ûi) = 1 else D̄ ← D̄ ∪ (F ∗(ûi), ûi).

6: end for

7: end for

8: return F (0,0)← F ∗,D, D̄.

In this subsection, we describe the exact implementation of the IPMAN algorithm used in our

experiments. We summarize the steps in Algorithm 2. As our generative and classification models

are neural networks, we remark on several improvements that can be made to the algorithm.

EC.3.3.1. Pre-training as a GAN Just as classical IPMs require a good initial point (i.e.,

lying within the feasible set) in order to construct a trajectory of points leading to an optimal

solution, IPMAN can be made more efficient by ensuring that the generative model is initialized

to predict points that are likely to be feasible. This initialization can greatly improve the training

time and stability of the algorithm. Consequently, we first pre-train the generative model and

subsequently apply transfer learning at the beginning of the algorithm (Goodfellow et al. 2016).

Pre-training amounts to training the generative model first as a Style Transfer GAN to learn to

predict dose distributions from CT images as in Mahmood et al. (2018). The steps are summarized

in Algorithm 1. In order to pre-train our generative model, we introduce a discriminator network

D(x,u) :R128×128×128×R128×128×128×8→R. As in a Style Transfer GAN, we train the discriminator

using D to classify whether a given dose and CT image pair belongs to the data distribution and

a generative model to predict dose distributions that fool the discriminator. Specifically,

min
F

max
D

LST :=
1

Nu

∑
(ûi,x̂i)∈D

logD(x̂i, ûi) + log
(
1−D(F (ûi), ûi)

)
+λST ‖F (ûi)− x̂i‖1

 .

The l1-loss is a regularization term that ensures that the generator predicts dose distributions that

resemble the ground truth and λST is the regularization parameter. GANs are trained by iterative

gradient descent between F (u) and D(x,u). In our implementation, we set λST = 90 and train the

GAN for 50 epochs, following the practice from Mahmood et al. (2018). At the end of pre-training,

we discard D(x,u) and let F (0,0)(u) denote the trained generative model.
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Algorithm 2 IPMAN

Input: Data sets of decisions D, D̄, and inputs Û = {ûi}Nu
i=1, Set of dual variables {λj}Mj=0, Number

of iterations K, Number of epochs EB,EF , Subset sampling rate s

Output: Final generative models F (j,K) for j ∈ {0, . . . ,M}
1: Pre-train generator using Algorithm 1.

2: Initialize generator F (j,0)← F ∗ for j ∈ {0, . . . ,M}, classifier B.

3: for k= 1 to K do

4: Sample subsets to train D(k) = σ(D;s), D̄(k) = σ(D̄;s|D|/|D̄|).
5: for e= 0 to EB do

6: Update classifier B(k)←Adam(∇LB).

7: end for

8: for j = 0 to M do

9: for e= 0 to EF do

10: Update generator F (j,k)←Adam(∇LF ).

11: end for

12: for all ûi ∈ Û do

13: Append D←D∪ (F (j,k)(ûi), ûi) if Ψ(F (j,k)(ûi), ûi) = 1 else D̄ ← D̄ ∪ (F (j,k)(ûi), ûi).

14: end for

15: end for

16: end for

17: return F (j,K) for j ∈ {0, . . . ,M}

EC.3.3.2. Sampling an infeasible data set of decisions D̄ Training IPMAN requires an

initial data set of infeasible decisions D̄. In practice, a data set of infeasible decisions would not

be available a priori and, instead, is generated by sampling. Note, however, that in every epoch of

the pre-training step, the generative model generates candidate solutions F (ûi) to attempt to fool

the discriminator. We save the generated decisions during pre-training and label them afterwards

as feasible or infeasible using the oracle. By training using 100 patients for 50 epochs, we generate

a total of 5000 dose distributions that are labelled as feasible or infeasible and then binned in the

appropriate D or D̄, respectively. The steps are summarized in Algorithm 1.

EC.3.3.3. Learning multi-label feasibility with sub-sampled data sets Training

IPMAN for multiple iterations can produce a large quantity of generated data points. Furthermore,

because we consider feasibility for each structure separately, training the classifier quickly becomes

prohibitively expensive. In order to reduce training time, we do not use the entire data sets D
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and D̄ but rather smaller sampled subsets. Let σ(·;s) be a random sampling operator (without

replacement) where s is the fraction of points to sample. For example, σ(D; 0.5) denotes a randomly

sampled subset of size 0.5|D|. In our implementation, we set s= 0.3 and trained the classifier using

D(k) = σ(D; 0.3) and D̄(k) = σ(D̄; 0.3|D|/|D̄|); this reduced the training time to 24 hours.

We next define the multi-label classification problem. For any (ûi, x̂i) in D or D̄, let ψi,r be a label

determining whether the dose distribution had satisfied the polyhedral and (conditional) hidden

constraints for structure r. That is, if the ground truth dose for ûi satisfied the hidden constraints,

ψi,r = 1 if the polyhedral and hidden constraints were satisfied and zero otherwise. If the clinical

dose did not satisfy the hidden constraint, then ψi,r = 1 if only the polyhedral constraints were

satisfied; here, the hidden constraint is inactive for this patient. Then, let [B(x,u)]r denote the

r-th element of the classifier output. The classifier problem is

max
B∈B

LB :=
1

Nx + N̄x

∑
(x̂i,ûi)∈
D(k)∪D̄(k)

∑
r∈R

(
ψi,r log

[
B(x̂i, ûi)

]
r

+ (1−ψi,r) log
(

1−
[
B(x̂i, ûi)

]
r

)) .

The above problem specializes to FCP(D(k), D̄(k)) in the single-class setting (i.e., |R|= 1). For a

dose distribution to be classified feasible, B(x,u)r = 1 for all r ∈R. This approach of separating the

constraint satisfaction along all structures individually is equivalent to modeling the optimization

problem via a barrier function for each structure. Furthermore, the barriers are approximated by a

neural network classifier with shared weights except in the last layer. As we describe later below, the

objective of the barrier optimization problem is obtained by summing all of the separate barriers,

i.e., f(x)− λ∑r∈R log[B(x,u)]r. Finally, we minimize LB using the Adam optimizer for EB = 10

epochs in every iteration. Note that it is essential to ensure that the classifier accurately predicts

feasibility in order to be able to approximate a δ-barrier.

EC.3.3.4. Regularized barrier optimization problem We include an l1 regularization

term in training. This term is equivalent to the one used in the pre-training stage and is useful to

ensure that predicted dose distributions do not deviate too far from the ground truth. Note that we

only use this regularization in the first set of experiments (Section 6.3) and remove it in the second

set of experiments (Section 6.4). There, the ground truth plans may not be feasible, meaning that

it would be incorrect to replicate ground truth behavior. However, a consequence of removing a

regularization term is that certain models may become unstable and deviate significantly if the

classifier is not a complete δ-barrier. We observe this behavior in λ= 4 where the model minimizes

dose while ignoring feasibility.
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With slight abuse of notation, let z(F (u)) denote the vector of average doses to each structure

as constructed by the generative model. Then, the generative barrier problem in this setting is

min
F∈F

LF :=
1

Nu

∑
ûi∈Û

(
1

λj
f
(
z
(
F (ûi)

))
+λST ‖F (ûi)− x̂i‖1−

∑
r∈R

[
B(k)

(
F (ûi), ûi

)]
r

) .

We minimize LF using the Adam optimizer for EF = 1 epoch in every iteration. It is important

to ensure that the classifier is trained close to optimality to ensure that it approximates a δ-barrier.

Furthermore, given the nature of training the classifier, it is often the case that the classifier’s

support is uneven and may have areas of local optimality that the generator may abuse. A standard

practice in the GAN literature is to control the training duration of the two networks; we employ a

similar strategy by training the generative model for a shorter duration than the classifier in order

to ensure that the generator does not overfit and abuse local optima caused by the classifier. As

previously mentioned, we set λST = 50 for the first set of experiments but require that λST = 0 for

the second set.


